117 research outputs found

    5-Fluorouracil-loaded poly(ε-caprolactone) nanoparticles combined with phage E gene therapy as a new strategy against colon cancer

    Get PDF
    This work aimed to develop a new therapeutic approach to increase the efficacy of 5-fluorouracil (5-FU) in the treatment of advanced or recurrent colon cancer. 5-FU-loaded biodegradable poly(ε-caprolactone) nanoparticles (PCL NPs) were combined with the cytotoxic suicide gene E (combined therapy). The SW480 human cancer cell line was used to assay the combined therapeutic strategy. This cell line was established from a primary adenocarcinoma of the colon and is characterized by an intrinsically high resistance to apoptosis that correlates with its resistance to 5-FU. 5-FU was absorbed into the matrix of the PCL NPs during synthesis using the interfacial polymer disposition method. The antitumor activity of gene E from the phage ϕX174 was tested by generating a stable clone (SW480/12/E). In addition, the localization of E protein and its activity in mitochondria were analyzed. We found that the incorporation of 5-FU into PCL NPs (which show no cytotoxicity alone), significantly improved the drug’s anticancer activity, reducing the proliferation rate of colon cancer cells by up to 40-fold when compared with the nonincorporated drug alone. Furthermore, E gene expression sensitized colon cancer cells to the cytotoxic action of the 5-FU-based nanomedicine. Our findings demonstrate that despite the inherent resistance of SW480 to apoptosis, E gene activity is mediated by an apoptotic phenomenon that includes modulation of caspase-9 and caspase-3 expression and intense mitochondrial damage. Finally, a strongly synergistic antiproliferative effect was observed in colon cancer cells when E gene expression was combined with the activity of the 5-FU-loaded PCL NPs, thereby indicating the potential therapeutic value of the combined therapy

    State-of-the-art neonatal cerebral ultrasound: technique and reporting

    Get PDF
    In the past three decades, cerebral ultrasound (CUS) has become a trusted technique to study the neonatal brain. It is a relatively cheap, non-invasive, bedside neuroimaging method available in nearly every hospital. Traditionally, CUS was used to detect major abnormalities, such as intraventricular hemorrhage (IVH), periventricular hemorrhagic infarction, post-hemorrhagic ventricular dilatation, and (cystic) periventricular leukomalacia (cPVL). The use of different acoustic windows, such as the mastoid and posterior fontanel, and ongoing technological developments, allows for recognizing other lesion patterns (e.g., cerebellar hemorrhage, perforator stroke, developmental venous anomaly). The CUS technique is still being improved with the use of higher transducer frequencies (7.5-18\u2009MHz), 3D applications, advances in vascular imaging (e.g. ultrafast plane wave imaging), and improved B-mode image processing. Nevertheless, the helpfulness of CUS still highly depends on observer skills, knowledge, and experience. In this special article, we discuss how to perform a dedicated state-of-the-art neonatal CUS, and we provide suggestions for structured reporting and quality assessment

    Oxytocin in the Circadian Timing of Birth

    Get PDF
    BACKGROUND: The molecular components determining the timing for birth remain an incompletely characterized aspect of reproduction, with important conceptual and therapeutic ramifications for management of preterm, post-term and arrested labor. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that oxytocin mediates circadian regulation of birth, we evaluated parturition timing following shifts in light cycles in oxytocin (OT)-deficient mice. We find that, in contrast to wild type mice that do not shift the timing of birth following a 6-h advance or delay in the light cycle, OT-deficient mice delivered at random times of day. Moreover, shifts in the light-dark cycle of gravid wild type mice have little impact on the pattern of circadian oxytocin release. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate oxytocin plays a critical role in minimizing labor disruption due to circadian clock resetting

    Desarrollo de una herramienta basada en un soporte multimedia para el autoaprendizaje de la anatomía radiológica

    Get PDF
    La instauración del Espacio Europeo de Educación Superior nos conduce a la adopción de procesos de renovación en la metodología docente. Se deben desarrollar estrategias en las que el alumno sea protagonista de su propio aprendizaje. En nuestro ámbito enseñanza, las Ciencias de la Salud, nos enfrentamos a la necesidad de aplicar estos principios integrando conocimientos básicos y clínicos y desarrollando materiales útiles en la actividad profesional de nuestros alumnos. En este contexto, diferentes Profesores del Área de Anatomía y Embriología Humana hemos desarrollado un material docente que interesa a un conjunto de conocimientos de significada complejidad comunes a las diferentes Licenciaturas y Diplomaturas de Ciencias de la Salud. Nuestra aplicación permite el estudio individual de elementos osteológicos y la compresión de los patrones radiológicos normales. Dicho material podrá ser utilizado en procesos de enseñanza aprendizaje mediante sistemas didácticos alternativos

    International lower limb collaborative (INTELLECT) study: a multicentre, international retrospective audit of lower extremity open fractures

    Get PDF
    Trauma remains a major cause of mortality and disability across the world1, with a higher burden in developing nations2. Open lower extremity injuries are devastating events from a physical3, mental health4, and socioeconomic5 standpoint. The potential sequelae, including risk of chronic infection and amputation, can lead to delayed recovery and major disability6. This international study aimed to describe global disparities, timely intervention, guideline-directed care, and economic aspects of open lower limb injuries

    A Review on the Mechanical Modeling of Composite Manufacturing Processes

    Get PDF
    © 2016, The Author(s). The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since the residual stresses alter the internal stress level of the composite part during the service life and the residual shape distortions may lead to not meeting the desired geometrical tolerances. The occurrence of residual stresses during the manufacturing process inherently contains diverse interactions between the involved physical phenomena mainly related to material flow, heat transfer and polymerization or crystallization. Development of numerical process models is required for virtual design and optimization of the composite manufacturing process which avoids the expensive trial-and-error based approaches. The process models as well as applications focusing on the prediction of residual stresses and shape distortions taking place in composite manufacturing are discussed in this study. The applications on both thermoset and thermoplastic based composites are reviewed in detail

    Effect of surgical experience and spine subspecialty on the reliability of the {AO} Spine Upper Cervical Injury Classification System

    Get PDF
    OBJECTIVE The objective of this paper was to determine the interobserver reliability and intraobserver reproducibility of the AO Spine Upper Cervical Injury Classification System based on surgeon experience (< 5 years, 5–10 years, 10–20 years, and > 20 years) and surgical subspecialty (orthopedic spine surgery, neurosurgery, and "other" surgery). METHODS A total of 11,601 assessments of upper cervical spine injuries were evaluated based on the AO Spine Upper Cervical Injury Classification System. Reliability and reproducibility scores were obtained twice, with a 3-week time interval. Descriptive statistics were utilized to examine the percentage of accurately classified injuries, and Pearson’s chi-square or Fisher’s exact test was used to screen for potentially relevant differences between study participants. Kappa coefficients (κ) determined the interobserver reliability and intraobserver reproducibility. RESULTS The intraobserver reproducibility was substantial for surgeon experience level (< 5 years: 0.74 vs 5–10 years: 0.69 vs 10–20 years: 0.69 vs > 20 years: 0.70) and surgical subspecialty (orthopedic spine: 0.71 vs neurosurgery: 0.69 vs other: 0.68). Furthermore, the interobserver reliability was substantial for all surgical experience groups on assessment 1 (< 5 years: 0.67 vs 5–10 years: 0.62 vs 10–20 years: 0.61 vs > 20 years: 0.62), and only surgeons with > 20 years of experience did not have substantial reliability on assessment 2 (< 5 years: 0.62 vs 5–10 years: 0.61 vs 10–20 years: 0.61 vs > 20 years: 0.59). Orthopedic spine surgeons and neurosurgeons had substantial intraobserver reproducibility on both assessment 1 (0.64 vs 0.63) and assessment 2 (0.62 vs 0.63), while other surgeons had moderate reliability on assessment 1 (0.43) and fair reliability on assessment 2 (0.36). CONCLUSIONS The international reliability and reproducibility scores for the AO Spine Upper Cervical Injury Classification System demonstrated substantial intraobserver reproducibility and interobserver reliability regardless of surgical experience and spine subspecialty. These results support the global application of this classification system
    corecore