644 research outputs found

    A methodology for automated feature engineering in training of shallow neural networks for prediction of multi-linear growth failures (“Nova Algorithm”)

    Get PDF
    Deep learning requires a large data set. When working with smaller data sets we need an automated approach for feature learning as a pre-processing step to create the training set for a shallow neural network with one hidden layer. The outcome of the neural net classifier is filtered using post-processing rules over a defined wait and quiet period to create an ensemble prediction with higher quality. This gives us the benefits of deep learning, but with a smaller data set. A partial implementation of this methodology was used for a pilot release for prediction of Common Previsioning Group (CPG) growth failures in 3PAR storage devices, using a trained neural net model with additional derived attributes, pre-processing rules and post-processing steps, applied to 90 days history of logical disk free space for each CPG on the storage device

    Do Interventions Designed to Support Shared Decision-Making Reduce Health Inequalities? : A Systematic Review and Meta-Analysis

    Get PDF
    Copyright: Š 2014 Durand et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Increasing patient engagement in healthcare has become a health policy priority. However, there has been concern that promoting supported shared decision-making could increase health inequalities. Objective: To evaluate the impact of SDM interventions on disadvantaged groups and health inequalities. Design: Systematic review and meta-analysis of randomised controlled trials and observational studies.Peer reviewe

    A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation

    Get PDF
    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally

    Predictors for neonatal death in the rural areas of Shaanxi Province of Northwestern China: a cross-sectional study

    Get PDF
    Background Almost all (99%) neonatal deaths arise in low-income and middle-income countries. Approximately 450 new-born children die every hour, which is mainly from preventable causes. There has been increased recognition of the need for these countries to implement public health interventions that specifically target neonatal deaths. The purpose of this paper is to identify the predictors of neonatal death in Type 4 rural (poorest) counties in Shaanxi Province of northwestern China. Methods A cross-sectional study was conducted in Shaanxi Province, China. A single-stage survey design was identified to estimate standard errors. Because of concern about the complex sample design, the data were analysed using multivariate logistic regression analysis. Socioeconomic and maternal health service utilization factors were added into the model. Results During the study period, a total of 4750 women who delivered in the past three years were randomly selected for interview in the five counties. There were 4880 live births and 54 neonatal deaths identified. In the multiple logistic regression, the odds of neonatal death was significantly higher for multiparous women (OR = 2.77; 95% CI: 1.34, 5.70) and women who did not receive antennal health care in the first trimester of pregnancy (OR = 2.49; 95% CI: 1.41, 4.40). Women who gave birth in a county-level hospital (OR = 0.18; 95% CI: 0.04, 0.86) and had junior high school or higher education level (OR = 0.20; 95% CI: 0.05, 0.84) were significantly protected from neonatal death. Conclusions Public health interventions directed at reducing neonatal death should address the socioeconomic factors and maternal health service utilization, which significantly influence neonatal mortality in rural China. Multipara, low educational level of the women, availability of prenatal visits in the first trimester of pregnancy and hospital delivery should be considered when planning the interventions to reduce the neonatal mortality in rural areas

    Assessing the Quality of Care for Pneumonia in Integrated Community Case Management: A Cross-Sectional Mixed Methods Study

    Get PDF
    Background Pneumonia is the leading infectious cause of mortality in children under five worldwide. Community-level interventions, such as integrated community case management, have great potential to reduce the burden of pneumonia, as well as other diseases, especially in remote populations. However, there are still questions as to whether community health workers (CHW) are able to accurately assess symptoms of pneumonia and prescribe appropriate treatment. This research addresses limitations of previous studies using innovative methodology to assess the accuracy of respiratory rate measurement by CHWs and provides new evidence on the quality of care given for children with symptoms of pneumonia. It is one of few that assesses CHW performance in their usual setting, with independent re-examination by experts, following a considerable period of time post-training of CHWs. Methods In this cross-sectional mixed methods study, 1,497 CHW consultations, conducted by 90 CHWs in two districts of Luapula province, Zambia, were directly observed, with measurement of respiratory rate for children with suspected pneumonia recorded by video. Using the video footage, a retrospective reference standard assessment of respiratory rate was conducted by experts. Counts taken by CHWs were compared against the reference standard and appropriateness of the treatment prescribed by CHWs was assessed. To supplement observational findings, three focus group discussions and nine in depth interviews with CHWs were conducted. Results and Conclusion The findings support existing literature that CHWs are capable of measuring respiratory rates and providing appropriate treatment, with 81% and 78% agreement, respectively, between CHWs and experts. Accuracy in diagnosis could be strengthened through further training and the development of improved diagnostic tools appropriate for resource-poor settings

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Identification and Phylogenetic Analysis of Tityus pachyurus and Tityus obscurus Novel Putative Na+-Channel Scorpion Toxins

    Get PDF
    Background: Colombia and Brazil are affected by severe cases of scorpionism. In Colombia the most dangerous accidents are caused by Tityus pachyurus that is widely distributed around this country. In the Brazilian Amazonian region scorpion stings are a common event caused by Tityus obscurus. The main objective of this work was to perform the molecular cloning of the putative Na+-channel scorpion toxins (NaScTxs) from T. pachyurus and T. obscurus venom glands and to analyze their phylogenetic relationship with other known NaScTxs from Tityus species. Methodology/Principal Findings: cDNA libraries from venom glands of these two species were constructed and five nucleotide sequences from T. pachyurus were identified as putative modulators of Na+-channels, and were named Tpa4, Tpa5, Tpa6, Tpa7 and Tpa8; the latter being the first anti-insect excitatory b-class NaScTx in Tityus scorpion venom to be described. Fifteen sequences from T. obscurus were identified as putative NaScTxs, among which three had been previously described, and the others were named To4 to To15. The peptides Tpa4, Tpa5, Tpa6, To6, To7, To9, To10 and To14 are closely related to the a-class NaScTxs, whereas Tpa7, Tpa8, To4, To8, To12 and To15 sequences are more related to the b-class NaScTxs. To5 is possibly an arthropod specific toxin. To11 and To13 share sequence similarities with both a and b NaScTxs. By means of phylogenetic analysis using the Maximum Parsimony method and the known NaScTxs from Tityus species, these toxins were clustered into 14 distinct groups. Conclusions/Significance: This communication describes new putative NaScTxs from T. pachyurus and T. obscurus and their phylogenetic analysis. The results indicate clear geographic separation between scorpions of Tityus genus inhabiting the Amazonian and Mountain Andes regions and those distributed over the Southern of the Amazonian rainforest. Based on the consensus sequences for the different clusters, a new nomenclature for the NaScTxs is proposed
    • …
    corecore