Technical Disclosure Commons

Defensive Publications Series

February 26, 2018

A methodology for automated feature engineering in training of shallow neural networks for prediction of multi-linear growth failures ("Nova Algorithm")

Dermot Cochran Hewlett Packard Enterprise

Martin Roe *Hewlett Packard Enterprise*

CV Goudar Hewlett Packard Enterprise

Breda Martyn Hewlett Packard Enterprise

Mainak Das Hewlett Packard Enterprise

See next page for additional authors

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation

Cochran, Dermot; Roe, Martin; Goudar, CV; Martyn, Breda; Das, Mainak; Uppuluri, Pratush; Lennon, Sean; Panda, Basudev; King, Sarah; Dolan, Liam; and Hughes, James Marshall, "A methodology for automated feature engineering in training of shallow neural networks for prediction of multi-linear growth failures ("Nova Algorithm")", Technical Disclosure Commons, (February 26, 2018) https://www.tdcommons.org/dpubs_series/1075

This work is licensed under a Creative Commons Attribution 4.0 License.

This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

Inventor(s)

Dermot Cochran, Martin Roe, CV Goudar, Breda Martyn, Mainak Das, Pratush Uppuluri, Sean Lennon, Basudev Panda, Sarah King, Liam Dolan, and James Marshall Hughes

A methodology for automated feature engineering in training of shallow neural networks for prediction of multi-linear growth failures ("Nova Algorithm")

Prediction of outages due to multi-linear growth patterns using a binary classification neural net with automated pre-processing to derive training set, and post-processing to achieve ensemble predictions.

1. Problem(s) solved

Data center outages can be prevented or resolved with careful analysis of telemetry logs by experienced engineers with domain specific knowledge about server, storage and networking products. This process of prediction and prevention can be automated using available data sources. However, these data sources were too sparse to use deep learning for prediction of outages. There is a need for engineering of the feature vectors to allow the usage of a shallow neural net.

This invention disclosure describes how to make predictions using smaller data sets, allowing the use of shallow neural networks instead of deep learning.

This methodology for prediction and prevention of data center outages was applied to prediction of Common Provisioning Group (CPG) growth failures in 3PAR storage devices, using a trained neural net model with additional derived attributes, pre-processing rules and post-processing steps, applied to 90 days history of logical disk free space for each CPG in the storage device.

CPGs are collections of logical disk volumes, which can be dynamically allocated. There are hidden patterns in the way that logical disk free space is allocated and freed, which can lead to growth failures, causing an outage. These patterns are non-linear, and cannot be found using only a time series but can be found by training a neural net, in addition to time series analysis (e.g. ARIMA).

CPG growth failure outages can be predicted between 2-4 months in advance using a feature vector containing the most recent 91 days of normalized logical disk free space (reservoir level) plus 8 derived attributes, and a shallow neural network consisting of one "hidden" (inner) layer with 62 nodes and 500 iterations.

A decision tree methodology is needed to automate the process of feature engineering, that is, to identify the optimal subset of derived attributes, discover pre-filtering rules and discover the optimal thresholds for post-processing rules.

2. Prior Solutions

There are a number of alternative approaches for the combination of decision trees with shallow neural networks, but none use a decision tree to create and refine the training set for the neural net.

Sethi, Ishwar. (1990). Entropy nets: From decision trees to neural networks. Proceedings of the IEEE. 78. 1605 - 1613. 10.1109/5.58346.

Disadvantages of entropy nets: Entropy nets are the conversion of a decision tree into a neural net. This does not meet our requirement for automated feature engineering.

Soltan, A & Mohammadi, M. (2012). A hybrid model using decision tree and neural network for credit scoring problem. Management Science Letters, 2(5), 1683-1688.

The Soltan-Mohammadi model applies to decision tree analysis to the output of the neural net, rather than as a pre-processing layer. It does not solve our need for automated feature engineering.

Hinton's capsule methodology (<u>https://research.google.com/pubs/pub46351.html</u>) would provide a viable alternative but the details are different; our solution uses a small ensemble set of neural network models (see Figure 1) instead of a complex nested hierarchy of neural net classifiers.

Our approach has similarities to the Curriculum Learning Strategy (<u>http://ronan.collobert.com/pub/matos/2009_curriculum_icml.pdf</u>) but with the additional pre-processing and post-processing steps e.g. C5.0 decision tree and GARCH model for the time series.

3. Description

Figure 1 - Refinement of Feature Vectors and Predictions

<u>Step</u>	<u>Name</u>	Explanation	<u>Example</u>	<u>Fully or</u> <u>Partly</u> <u>Implemented</u> <u>in Pilot?</u>
1	Historical data collection	For the resource in question we need 2-3 years of historical data with samples taken at regular intervals	Daily logical disk free space level for each CPG on a storage device	Full
2	Prediction window	Assemble base feature vectors for a defined period	91 days of logical disk free space	Full

3	Normalization	(a) Add an	(a) A logarithmic	Partly –
		attribute for	scale for free	maximum
		the maximum	space capacity	capacity
		capacity of the	(b) Percentage	attribute was
		reservoir;	free space	excluded
		convert this	over last 91	from pilot
		attribute to a	days	
		normalization		
		scale		
		(b) Normalize the		
		other data		
		points relative		
		to the		
		maximum		
		capacity		

4	Derivation of	(a)	Calculate	The first class of	Partly – only
	Additional		maximum	candidate attributes	a limited
	Attributes		decline over	are average slope	subset of
			3,5,7 days to	over the last 7, 15, 30	derived
			size of the time	and 45 days	attributes
		(b)	size of the time window Calculate other derived attributes	and 45 days Some other possible derived attributes are (i) absolute (or scaled) value of free space on last day, (ii) standard deviation of daily percentage free space, (iii) highest daily decline, (iv) highest daily increase in % free space, (v) number of days with a decrease in space., (vi) number of days with an increase in space and (vii) number of days with a change of direction from an increase to a decrease or the	attributes were used
				reverse	

5	Selection of	Select the derived	The top 8 derived	Partly – this
	best derived	attribute that led to	attributes were:	step was
	attributes	most reduction in false positives and add to feature vector, then find the next most significant derived attribute, until the improvement is marginal	Derived Feature = Standard deviation of daily percentage change Derived Feature = Maximum contiguous decline of percentage of free space over used space	hard-coded in pilot
		The neural net is trained with different permutations of derived attributes and we select the subset which yields the best results; thus the derived attributes are not static; they can change after re- training with new data	Derived Feature = Maximum contiguous decline of percentage of free space over used space divided by the value of the percentage of free space over used space on the last day. Derived Feature = LD Space remaining on last day divided by the growth increment. This data was scaled using the formula (Xi- mean/standard deviation).	
			Derived Feature = Negative Change Count	
			Derived Feature = Differential Sign Change Count	
			Derived Feature = Positive Change Count	

			Derived Feature = Average slope over the last 15 days	
			Derived Feature = Maximum negative change over one day	
6	Derivation of pre-filtering rules	Decision tree analysis (e.g. C5.0 decision tree) is used to derive pre- processing rules based on the extended feature vector	If attribute-A less than threshold-A and attribute-B greater than threshold-B, then exclude that feature vector from the training set	Partly – this step was hard-coded in pilot

7	Selection of	We select the pre-	Rule 1 is defined as:	Partly – this
	best pre-	processing rules that	(Day 1 > 77.17) &	step was
	filtering rules	yield most	(Variability <=	hard-coded
		improvement in	0.5004117)	in pilot
		precision and recall The new engineered training set includes feature vectors with derived attributes and filtered by pre- processing rules that will change if we re- train using new data	Rule 2 is defined as: (Last Day > 85.09667) & (negative change count <=61) & (max positive <= 10.67667) & (differential sign change count <=16) & (last 15 day slope variance <= 0.2052487) Rule 3 is defined as: (variability <= 6.722171) & (mean slope of last 15 days <= 0.5142223) & (negative change count <= 63) & (differential sign change count<= 1) & (last 14 Days average > 60) & (standard	
			Rule 4 is defined as:(variability <= 1.458835) & (negative change count <= 61) & (differential sign change count <= 15) & (last 14 Days average > 55) & (max positive > 0.1) Rule 5 is defined as:	
			(Day 1 > 73.48333) & (coefficient of variation <= 6.158184) & (mean	

	slope of last 15 days <= 0.5546666) & (mean slope of last 15 days > 0.0)	
	Rule 7 is defined as: (maximum decline over percentage left <= 0.3254047) & (average > 66.14458) & (coefficient of variation <=5) & (negative change count > 11) & (negative change count <=28)	
	Rule 8 is defined as: (avg > 65.67363) & (lastnmeanslope15 <= 0.5546666) & (maxneg > -1.76) & (maxpos > 0.163334)	

8	Derivation of	(a) Combine	(a) A wait period	Partly – this
	ensemble	successive	of 10 days	step was
	batch size (see	predictions	(b) A minimum of	hard-coded
	Figure 2).	over a defined	10 trending	in pilot; only
		period <i>, or</i>	predictions	one neural
		alternatively	with the last	net model
		train several	10 days	was trained,
		different neural	A wait period and	but we used
		network models	voting threshold is	trending
		with the same	calculated e.g. 9 out	predictions
		data to reduce	of 10 days would	over a range
		noise and over-	mean that the same	of 10 days to
		fitting	prediction result must	reduce noise
		(b) Choose the	be achieved at least 9	and over-
		number of	times out of the last	nung.
		trending	10 days - this creates	
		nredictions	an ensemble	
		needed	prediction based on	
		needed	10 feature vectors,	
			staggered one day	
			apart. Based on a	
			defined training set	
			we select the voting	
			threshold and wait	
			period that yields the	
			best precision and	
			recall, for an arbitrary	
			neural net e.g. 56	
			nodes and 1 hidden	
			layer.	
9	Derivation of	Exclude any trending	A quiet period of 15	Partly – this
	quiet period	predictions with a	days between	step was
		certain time frame of	prediction	hard-coded
		the last ensemble	notifications	in pliot
		prediction		

10	Inclusion of	A GARCH or ARIMA	Primary predictions	Not
	secondary	time series model as a	suppressed based on	implemented
	model	secondary filter to	confidence level and	in pilot
		reduce false positives	history of false	
			positives	

Figure 2 - Ensemble predictions

4. Advantages

The methodology provides a new method for prediction of resource consumption growth outages in data centers. It can be generalized to forecasting capacity for any resource that rises or falls (in a multi-linear pattern) on a daily basis. It also provides a method for automated feature engineering when training shallow neural networks using sparse data.

This is superior to simple capacity forecasting because we are learning from the data, and more versatile than deep learning because we can also learn from sparse data sets.

The unexpected benefit is that this solution could be applied to any reservoir like resource that rises and falls on a daily basis e.g. number of available parking slots.

5. Title

Automated feature engineering for shallow neural networks

6. Abstract

Deep learning requires a large data set. When working with smaller data sets we need an automated approach for feature learning as a pre-processing step to create the training set for a shallow neural network with one hidden layer. The outcome of the neural net classifier is filtered using post-processing rules over a defined wait and quiet period to create an ensemble

prediction with higher quality. This gives us the benefits of deep learning, but with a smaller data set.

A partial implementation of this methodology was used for a pilot release for prediction of Common Previsioning Group (CPG) growth failures in 3PAR storage devices, using a trained neural net model with additional derived attributes, pre-processing rules and post-processing steps, applied to 90 days history of logical disk free space for each CPG on the storage device.

Authors:

Dermot Cochran - Hewlett Packard Enterprise Martin Roe - Hewlett Packard Enterprise CV Goudar - Hewlett Packard Enterprise Breda Martyn - Hewlett Packard Enterprise Mainak Das - Hewlett Packard Enterprise Pratush Uppuluri - Hewlett Packard Enterprise Sean Lennon - Hewlett Packard Enterprise Basudev Panda - Hewlett Packard Enterprise Sarah King - Hewlett Packard Enterprise Liam Dolan - Hewlett Packard Enterprise James Marshall Hughes - Hewlett Packard Enterprise