134 research outputs found

    Exploring preconception signatures of metabolites in mothers with gestational diabetes mellitus using a non-targeted approach

    Get PDF
    BackgroundMetabolomic changes during pregnancy have been suggested to underlie the etiology of gestational diabetes mellitus (GDM). However, research on metabolites during preconception is lacking. Therefore, this study aimed to investigate distinctive metabolites during the preconception phase between GDM and non-GDM controls in a nested case-control study in Singapore.MethodsWithin a Singapore preconception cohort, we included 33 Chinese pregnant women diagnosed with GDM according to the IADPSG criteria between 24 and 28 weeks of gestation. We then matched them with 33 non-GDM Chinese women by age and pre-pregnancy body mass index (ppBMI) within the same cohort. We performed a non-targeted metabolomics approach using fasting serum samples collected within 12 months prior to conception. We used generalized linear mixed model to identify metabolites associated with GDM at preconception after adjusting for maternal age and ppBMI. After annotation and multiple testing, we explored the additional predictive value of novel signatures of preconception metabolites in terms of GDM diagnosis.ResultsA total of 57 metabolites were significantly associated with GDM, and eight phosphatidylethanolamines were annotated using HMDB. After multiple testing corrections and sensitivity analysis, phosphatidylethanolamines 36:4 (mean difference beta: 0.07; 95% CI: 0.02, 0.11) and 38:6 (beta: 0.06; 0.004, 0.11) remained significantly higher in GDM subjects, compared with non-GDM controls. With all preconception signals of phosphatidylethanolamines in addition to traditional risk factors (e.g., maternal age and ppBMI), the predictive value measured by area under the curve (AUC) increased from 0.620 to 0.843.ConclusionsOur data identified distinctive signatures of GDM-associated preconception phosphatidylethanolamines, which is of potential value to understand the etiology of GDM as early as in the preconception phase. Future studies with larger sample sizes among alternative populations are warranted to validate the associations of these signatures of metabolites and their predictive value in GDM.Peer reviewe

    Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity

    Get PDF
    Ribbon-shaped carbon fibers have been prepared from mesophase pitch by melt-spinning, oxidative stabilization and further heat treatment. The internal graphitic layers of ribbon-shaped carbon fibers graphitized at 2800 C show a highly preferred orientation along the longitudinal direction. Parallel stretched and unidirectional arranged ribbon-shaped carbon fibers treated at about 450 C were sprayed with a mesophase pitch powder grout, and then hot-pressed at 500 C and subsequently carbonized and graphitized at various temperatures to produce one-dimensional carbon/carbon (C/C) composite blocks. The shape and microstructural orientation of ribbon fibers have been maintained in the process of hot-pressing and subsequent heat treatments and the main planes of the ribbon fibers are orderly accumulated along the hot-pressing direction. Microstructural analyses indicate that the C/C composite blocks have a typical structural anisotropy derived from the unidirectional arrangement of the highly oriented wide ribbon-shaped fibers in the composite block. The thermal conductivities of the C/C composites along the longitudinal direction of ribbon fibers increase with heat-treatment temperatures. The longitudinal thermal conductivity and thermal diffusivity at room temperature of the C/C composite blocks graphitized at 3100 C are 896 W/m K and 642 mm2/s, respectively.Key Program of Major Research Plan of the National Natural Science Foundation (grant No. 91016003) and the National Natural Science Foundation (grant No. 51372177) of China.http://www.elsevier.com/locate/carbonhb2014ai201

    PAK1IP1, a ribosomal stress-induced nucleolar protein, regulates cell proliferation via the p53–MDM2 loop

    Get PDF
    Cell growth and proliferation are tightly controlled via the regulation of the p53–MDM2 feedback loop in response to various cellular stresses. In this study, we identified a nucleolar protein called PAK1IP1 as another regulator of this loop. PAK1IP1 was induced when cells were treated with chemicals that disturb ribosome biogenesis. Overexpression of PAK1IP1 inhibited cell proliferation by inducing p53-dependent G1 cell-cycle arrest. PAK1IP1 bound to MDM2 and inhibited its ability to ubiquitinate and to degrade p53, consequently leading to the accumulation of p53 levels. Interestingly, knockdown of PAK1IP1 in cells also inhibited cell proliferation and induced p53-dependent G1 arrest. Deficiency of PAK1IP1 increased free ribosomal protein L5 and L11 which were required for PAK1IP1 depletion-induced p53 activation. Taken together, our results reveal that PAK1IP1 is a new nucleolar protein that is crucial for rRNA processing and plays a regulatory role in cell proliferation via the p53–MDM2 loop

    Diverse Applications of Nanomedicine

    Get PDF
    The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic. \ua9 2017 American Chemical Society

    Credibilistic Loss Aversion Nash Equilibrium for Bimatrix Games with Triangular Fuzzy Payoffs

    No full text
    Inspired by Shalev’s model of loss aversion, we investigate the effect of loss aversion on a bimatrix game where the payoffs in the bimatrix game are characterized by triangular fuzzy variables. First, we define three solution concepts of credibilistic loss aversion Nash equilibria, and their existence theorems are presented. Then, three sufficient and necessary conditions are given to find the credibilistic loss aversion Nash equilibria. Moreover, the relationship among the three credibilistic loss aversion Nash equilibria is discussed in detail. Finally, for 2×2 bimatix game with triangular fuzzy payoffs, we investigate the effect of loss aversion coefficients and confidence levels on the three credibilistic loss aversion Nash equilibria. It is found that an increase of loss aversion levels of a player leads to a decrease of his/her own payoff. We also find that the equilibrium utilities of players are decreasing (increasing) as their own confidence levels when players employ the optimistic (pessimistic) value criterion

    Improved Multiple Vector Representations of Images and Robust Dictionary Learning

    No full text
    Each sparse representation classifier has different classification accuracy for different samples. It is difficult to achieve good performance with a single feature classification model. In order to balance the large-scale information and global features of images, a robust dictionary learning method based on image multi-vector representation is proposed in this paper. First, this proposed method generates a reasonable virtual image for the original image and obtains the multi-vector representation of all images. Second, the same dictionary learning algorithm is used for each vector representation to obtain multiple sets of image features. The proposed multi-vector representation can provide a good global understanding of the whole image contour and increase the content of dictionary learning. Last, the weighted fusion algorithm is used to classify the test samples. The introduction of influencing factors and the automatic adjustment of the weights of each classifier in the final decision results have a significant indigenous effect on better extracting image features. The study conducted experiments on the proposed algorithm on a number of widely used image databases. A large number of experimental results show that it effectively improves the accuracy of image classification. At the same time, to fully dig and exploit possible representation diversity might be a better way to lead to potential various appearances and high classification accuracy concerning the image
    corecore