229 research outputs found
High-throughput, quantitative analyses of genetic interactions in E. coli.
Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli
Lipid metabolic perturbation is an early-onset phenotype in adult spinster mutants: a Drosophila model for lysosomal storage disorders
Intracellular accumulation of lipids and swollen dysfunctional lysosomes are linked to several neurodegenerative diseases, including lysosomal storage disorders (LSD). Detailed characterization of lipid metabolic changes in relation to the onset and progression of neurodegeneration is currently missing. We systematically analyzed lipid perturbations in spinster (spin) mutants, a Drosophila model of LSD-like neurodegeneration. Our results highlight an imbalance in brain ceramide and sphingosine in the early stages of neurodegeneration, preceding the accumulation of endomembranous structures, manifestation of altered behavior, and buildup of lipofuscin. Manipulating levels of ceramidase and altering these lipids in spin mutants allowed us to conclude that ceramide homeostasis is the driving force in disease progression and is integral to spin function in the adult nervous system. We identified 29 novel physical interaction partners of Spin and focused on the lipid carrier protein, Lipophorin (Lpp). A subset of Lpp and Spin colocalize in the brain and within organs specialized for lipid metabolism (fat bodies and oenocytes). Reduced Lpp protein was observed in spin mutant tissues. Finally, increased levels of lipid metabolites produced by oenocytes in spin mutants allude to a functional interaction between Spin and Lpp, underscoring the systemic nature of lipid perturbation in LSD
How participatory is parental consent in low literacy rural settings in low income countries? Lessons learned from a community based study of infants in South India
<p>Abstract</p> <p>Background</p> <p>A requisite for ethical human subjects research is that participation should be informed and voluntary. Participation during the informed consent process by way of asking questions is an indicator of the extent to which consent is informed.</p> <p>Aims</p> <p>The aims of this study were to assess the extent to which parents providing consent for children's participation in an observational tuberculosis (TB) research study in India actively participated during the informed consent discussion, and to identify correlates of that participation.</p> <p>Methods</p> <p>In an observational cohort study of tuberculosis in infants in South India, field supervisors who were responsible for obtaining informed consent noted down questions asked during the informed consent discussions for 4,382 infants who were enrolled in the study. These questions were post-coded by topic. Bivariate and multivariate analysis was conducted to examine factors associated with asking at least one question during the informed consent process.</p> <p>Results</p> <p>In total, 590 out of 4,382 (13.4%) parents/guardians asked any question during the informed consent process. We found that the likelihood of parents asking questions during the informed consent process was significantly associated with education level of either parent both parents being present, and location.</p> <p>Conclusions</p> <p>The findings have implications for planning the informed consent process in a largely rural setting with low levels of literacy. Greater effort needs to be directed towards developing simple participatory communication materials for the informed consent process. Furthermore, including both parents in a discussion about a child's participation in a research study may increase the extent to which consent is truly informed. Finally, continuing efforts need to be made to improve the communication skills of research workers with regard to explaining research processes and putting potential research participants at ease.</p
Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU
Stem cells are proposed to segregate chromosomes asymmetrically during self-renewing divisions so that older ('immortal') DNA strands are retained in daughter stem cells whereas newly synthesized strands segregate to differentiating cells(1-6). Stem cells are also proposed to retain DNA labels, such as 5-bromo-2-deoxyuridine (BrdU), either because they segregate chromosomes asymmetrically or because they divide slowly(5,7-9). However, the purity of stem cells among BrdU-label-retaining cells has not been documented in any tissue, and the 'immortal strand hypothesis' has not been tested in a system with definitive stem cell markers. Here we tested these hypotheses in haematopoietic stem cells (HSCs), which can be highly purified using well characterized markers. We administered BrdU to newborn mice, mice treated with cyclophosphamide and granulocyte colony-stimulating factor, and normal adult mice for 4 to 10 days, followed by 70 days without BrdU. In each case, less than 6% of HSCs retained BrdU and less than 0.5% of all BrdU-retaining haematopoietic cells were HSCs, revealing that BrdU has poor specificity and poor sensitivity as an HSC marker. Sequential administration of 5-chloro-2-deoxyuridine and 5-iodo-2-deoxyuridine indicated that all HSCs segregate their chromosomes randomly. Division of individual HSCs in culture revealed no asymmetric segregation of the label. Thus, HSCs cannot be identified on the basis of BrdU-label retention and do not retain older DNA strands during division, indicating that these are not general properties of stem cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62821/1/nature06115.pd
Clinical characteristics of emergency department heart failure patients initially diagnosed as non-heart failure
BACKGROUND: Since previous studies suggest the emergency department (ED) misdiagnosis rate of heart failure is 10–20% we sought to describe the characteristics of ED patients misdiagnosed as non-decompensated heart failure in the ED. METHODS: We analyzed a prospective convenience sample of 439 patients at 4 emergency departments who presented with signs or symptoms of decompensated heart failure. Patients with a cardiology criterion standard diagnosis of decompensated heart failure and an ED diagnosis of decompensated heart failure were compared to patients with a criterion standard of decompensated heart failure but no ED diagnosis of decompensated heart failure. Two senior cardiology fellows retrospectively determined the patient's heart failure status during their acute ED presentation. The Mann-Whitney u-test for two groups, the Kruskall-Wallis test for multiple groups, or Chi-square tests, were used as appropriate. RESULTS: There were 173 (39.4%) patients with a criterion standard diagnosis of decompensated heart failure. Among those with this criterion standard diagnosis of decompensated heart failure, discordant patients without an ED diagnosis of decompensated heart failure (n = 58) were more likely to have a history of COPD (p = 0.017), less likely to have a previous history of heart failure (p = 0.014), and less likely to have an elevated b-type natriuretic peptide (BNP) level (median 518 vs 764 pg/ml; p = 0.038) than those who were given a concordant ED diagnosis of decompensated heart failure. BNP levels were higher in those with a criterion standard diagnosis of decompensated heart failure than in those without a criterion standard diagnosis (median 657 vs 62.7 pg/ml). However, 34.6% of patients with decompensated heart failure had BNP levels in the normal (<100 pg/ml; 6.1%) or indeterminate range (100–500 pg/ml; 28.5%). CONCLUSION: We found the ED diagnoses of decompensated heart failure to be discordant with the criterion standard in 14.3% of patients, the vast majority of which were due to a failure to diagnose heart failure when it was present. Patients with a previous history of COPD, without a previous history of heart failure and with lower BNP levels were more likely to have an ED misdiagnosis of non-decompensated heart failure. Readily available, accurate, objective ED tests are needed to improve the early diagnosis of decompensated heart failure in ED patients
Estimates of carbon stored in harvested wood products from the United States forest service northern region, 1906-2010
Effects of Dopamine on Sensitivity to Social Bias in Parkinson's Disease
Patients with Parkinson's disease (PD) sometimes develop impulsive compulsive behaviours (ICBs) due to their dopaminergic medication. We compared 26 impulsive and 27 non-impulsive patients with PD, both on and off medication, on a task that examined emotion bias in decision making. No group differences were detected, but patients on medication were less biased by emotions than patients off medication and the strongest effects were seen in patients with ICBs. PD patients with ICBs on medication also showed more learning from negative feedback and less from positive feedback, whereas off medication they showed the opposite effect
Identification of De Novo Copy Number Variants Associated with Human Disorders of Sexual Development
Disorders of sexual development (DSD), ranging in severity from genital abnormalities to complete sex reversal, are among the most common human birth defects with incidence rates reaching almost 3%. Although causative alterations in key genes controlling gonad development have been identified, the majority of DSD cases remain unexplained. To improve the diagnosis, we screened 116 children born with idiopathic DSD using a clinically validated array-based comparative genomic hybridization platform. 8951 controls without urogenital defects were used to compare with our cohort of affected patients. Clinically relevant imbalances were found in 21.5% of the analyzed patients. Most anomalies (74.2%) evaded detection by the routinely ordered karyotype and were scattered across the genome in gene-enriched subtelomeric loci. Among these defects, confirmed de novo duplication and deletion events were noted on 1p36.33, 9p24.3 and 19q12-q13.11 for ambiguous genitalia, 10p14 and Xq28 for cryptorchidism and 12p13 and 16p11.2 for hypospadias. These variants were significantly associated with genitourinary defects (P = 6.08×10−12). The causality of defects observed in 5p15.3, 9p24.3, 22q12.1 and Xq28 was supported by the presence of overlapping chromosomal rearrangements in several unrelated patients. In addition to known gonad determining genes including SRY and DMRT1, novel candidate genes such as FGFR2, KANK1, ADCY2 and ZEB2 were encompassed. The identification of risk germline rearrangements for urogenital birth defects may impact diagnosis and genetic counseling and contribute to the elucidation of the molecular mechanisms underlying the pathogenesis of human sexual development
Positive Selection in East Asians for an EDAR Allele that Enhances NF-κB Activation
Genome-wide scans for positive selection in humans provide a promising approach to establish links between genetic variants and adaptive phenotypes. From this approach, lists of hundreds of candidate genomic regions for positive selection have been assembled. These candidate regions are expected to contain variants that contribute to adaptive phenotypes, but few of these regions have been associated with phenotypic effects. Here we present evidence that a derived nonsynonymous substitution (370A) in EDAR, a gene involved in ectodermal development, was driven to high frequency in East Asia by positive selection prior to 10,000 years ago. With an in vitro transfection assay, we demonstrate that 370A enhances NF-κB activity. Our results suggest that 370A is a positively selected functional genetic variant that underlies an adaptive human phenotype
Diversifying Selection Underlies the Origin of Allozyme Polymorphism at the Phosphoglucose Isomerase Locus in Tigriopus californicus
The marine copepod Tigriopus californicus lives in intertidal rock pools along the Pacific coast, where it exhibits strong, temporally stable population genetic structure. Previous allozyme surveys have found high frequency private alleles among neighboring subpopulations, indicating that there is limited genetic exchange between populations. Here we evaluate the factors responsible for the diversification and maintenance of alleles at the phosphoglucose isomerase (Pgi) locus by evaluating patterns of nucleotide variation underlying previously identified allozyme polymorphism. Copepods were sampled from eleven sites throughout California and Baja California, revealing deep genetic structure among populations as well as genetic variability within populations. Evidence of recombination is limited to the sample from Pescadero and there is no support for linkage disequilibrium across the Pgi locus. Neutrality tests and codon-based models of substitution suggest the action of natural selection due to elevated non-synonymous substitutions at a small number of sites in Pgi. Two sites are identified as the charge-changing residues underlying allozyme polymorphisms in T. californicus. A reanalysis of allozyme variation at several focal populations, spanning a period of 26 years and over 200 generations, shows that Pgi alleles are maintained without notable frequency changes. Our data suggest that diversifying selection accounted for the origin of Pgi allozymes, while McDonald-Kreitman tests and the temporal stability of private allozyme alleles suggests that balancing selection may be involved in the maintenance of amino acid polymorphisms within populations
- …
