710 research outputs found
The 1983 drought in the West Sahel: a case study
Some drought years over sub-Saharan west Africa (1972, 1977, 1984) have been previously related to a cross-equatorial Atlantic gradient pattern with anomalously warm sea surface temperatures (SSTs) south of 10°N and anomalously cold SSTs north of 10°N. This SST dipole-like pattern was not characteristic of 1983, the third driest summer of the twentieth century in the Sahel. This study presents evidence that the dry conditions that persisted over the west Sahel in 1983 were mainly forced by high Indian Ocean SSTs that were probably remanent from the strong 1982/1983 El Niño event. The synchronous Pacific impact of the 1982/1983 El Niño event on west African rainfall was however, quite weak. Prior studies have mainly suggested that the Indian Ocean SSTs impact the decadal-scale rainfall variability over the west Sahel. This study demonstrates that the Indian Ocean also significantly affects inter-annual rainfall variability over the west Sahel and that it was the main forcing for the drought over the west Sahel in 1983
New Mechanics of Traumatic Brain Injury
The prediction and prevention of traumatic brain injury is a very important
aspect of preventive medical science. This paper proposes a new coupled
loading-rate hypothesis for the traumatic brain injury (TBI), which states that
the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an
impulsive loading that strikes the head in several coupled degrees-of-freedom
simultaneously. To show this, based on the previously defined covariant force
law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions
within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt
dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid
discontinuous deformations: translational dislocations and rotational
disclinations. Brain's dislocations and disclinations, caused by the
SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum
brain model.
Keywords: Traumatic brain injuries, coupled loading-rate hypothesis,
Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and
disclinationsComment: 18 pages, 1 figure, Late
Recommendations for a core outcome set for measuring standing balance in adult populations: a consensus-based approach
Standing balance is imperative for mobility and avoiding falls. Use of an excessive number of standing balance measures has limited the synthesis of balance intervention data and hampered consistent clinical practice.To develop recommendations for a core outcome set (COS) of standing balance measures for research and practice among adults.A combination of scoping reviews, literature appraisal, anonymous voting and face-to-face meetings with fourteen invited experts from a range of disciplines with international recognition in balance measurement and falls prevention. Consensus was sought over three rounds using pre-established criteria.The scoping review identified 56 existing standing balance measures validated in adult populations with evidence of use in the past five years, and these were considered for inclusion in the COS.Fifteen measures were excluded after the first round of scoring and a further 36 after round two. Five measures were considered in round three. Two measures reached consensus for recommendation, and the expert panel recommended that at a minimum, either the Berg Balance Scale or Mini Balance Evaluation Systems Test be used when measuring standing balance in adult populations.Inclusion of two measures in the COS may increase the feasibility of potential uptake, but poses challenges for data synthesis. Adoption of the standing balance COS does not constitute a comprehensive balance assessment for any population, and users should include additional validated measures as appropriate.The absence of a gold standard for measuring standing balance has contributed to the proliferation of outcome measures. These recommendations represent an important first step towards greater standardization in the assessment and measurement of this critical skill and will inform clinical research and practice internationally
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
The Formation and Evolution of the First Massive Black Holes
The first massive astrophysical black holes likely formed at high redshifts
(z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations.
These black holes grow by mergers and gas accretion, evolve into the population
of bright quasars observed at lower redshifts, and eventually leave the
supermassive black hole remnants that are ubiquitous at the centers of galaxies
in the nearby universe. The astrophysical processes responsible for the
formation of the earliest seed black holes are poorly understood. The purpose
of this review is threefold: (1) to describe theoretical expectations for the
formation and growth of the earliest black holes within the general paradigm of
hierarchical cold dark matter cosmologies, (2) to summarize several relevant
recent observations that have implications for the formation of the earliest
black holes, and (3) to look into the future and assess the power of
forthcoming observations to probe the physics of the first active galactic
nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant
Universe", Ed. A. J. Barger, Kluwer Academic Publisher
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
A Web-Based Training Resource for Therapists to Deliver an Evidence-Based Exercise Program for Rheumatoid Arthritis of the Hand (iSARAH): Design, Development, and Usability Testing
Background: The Strengthening and Stretching for Rheumatoid Arthritis of the Hand (SARAH) is a tailored, progressive exercise program for people having difficulties with wrist and hand function due to rheumatoid arthritis (RA). The program was evaluated in a large-scale clinical trial and was found to improve hand function, was safe to deliver, and was cost-effective. These findings led to the SARAH program being recommended in the UK National Institute for Health and Care Excellence guidelines for the management of adults with RA. To facilitate the uptake of this evidence-based program by clinicians, we proposed a Web-based training program for SARAH (iSARAH) to educate and train physiotherapists and occupational therapists on delivering the SARAH program in their practice. The overall iSARAH implementation project was guided by the 5 phases of the analysis, design, development, implementation, and evaluation (ADDIE) system design model. Objective: The objective of our study was to conduct the first 3 phases of the model in the development of the iSARAH project. Methods: Following publication of the trial, the SARAH program materials were made available to therapists to download from the trial website for use in clinical practice. A total of 35 therapists who downloaded these materials completed an online survey to provide feedback on practice trends in prescribing hand exercises for people with RA, perceived barriers and facilitators to using the SARAH program in clinical practice, and their preferences for the content and Web features of iSARAH. The development and design of iSARAH were further guided by a team of multidisciplinary health professionals (n=17) who took part in a half-day development meeting. We developed the preliminary version of iSARAH and tested it among therapists (n=10) to identify and rectify usability issues and to produce the final version. Results: The major recommendations made by therapists and the multidisciplinary team were having a simple Web design and layout, clear exercise pictures and videos, and compatibility of iSARAH on various browsers and devices. We rectified all usability issues in the preliminary version to develop the final version of iSARAH, which included 4 short modules and additional sections on self-assessment, frequently asked questions, and a resource library. Conclusions: The use of the ADDIE design model and engagement of end users in the development and evaluation phases have rendered iSARAH a convenient, easy-to-use, and effective Web-based learning resource for therapists on how to deliver the SARAH program. There is also huge potential for adapting iSARAH across different cultures and languages, thus opening more opportunities for wider uptake and application of the SARAH program into practice
Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections
Application of single-molecule switching nanoscopy (SMSN) beyond the coverslip surface poses substantial challenges due to sample-induced aberrations that distort and blur single-molecule emission patterns. We combined active shaping of point spread functions and efficient adaptive optics to enable robust 3D-SMSN imaging within tissues. This development allowed us to image through 30-μm-thick brain sections to visualize and reconstruct the morphology and the nanoscale details of amyloid-β filaments in a mouse model of Alzheimer's disease
Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae.
addresses: College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.notes: PMCID: PMC3276559The rice blast fungus Magnaporthe oryzae is one of the most significant pathogens affecting global food security. To cause rice blast disease the fungus elaborates a specialised infection structure called an appressorium. Here, we report genome wide transcriptional profile analysis of appressorium development using next generation sequencing (NGS). We performed both RNA-Seq and High-Throughput SuperSAGE analysis to compare the utility of these procedures for identifying differential gene expression in M. oryzae. We then analysed global patterns of gene expression during appressorium development. We show evidence for large-scale gene expression changes, highlighting the role of autophagy, lipid metabolism and melanin biosynthesis in appressorium differentiation. We reveal the role of the Pmk1 MAP kinase as a key global regulator of appressorium-associated gene expression. We also provide evidence for differential expression of transporter-encoding gene families and specific high level expression of genes involved in quinate uptake and utilization, consistent with pathogen-mediated perturbation of host metabolism during plant infection. When considered together, these data provide a comprehensive high-resolution analysis of gene expression changes associated with cellular differentiation that will provide a key resource for understanding the biology of rice blast disease
- …
