1,165 research outputs found
Nonlinear Hydrodynamics from Flow of Retarded Green's Function
We study the radial flow of retarded Green's function of energy-momentum
tensor and -current of dual gauge theory in presence of generic higher
derivative terms in bulk Lagrangian. These are first order non-linear Riccati
equations. We solve these flow equations analytically and obtain second order
transport coefficients of boundary plasma. This way of computing transport
coefficients has an advantage over usual Kubo approach. The non-linear equation
turns out to be a linear first order equation when we study the Green's
function perturbatively in momentum. We consider several examples including
term and generic four derivative terms in bulk. We also study the flow
equations for -charged black holes and obtain exact expressions for second
order transport coefficients for dual plasma in presence of arbitrary chemical
potentials. Finally we obtain higher derivative corrections to second order
transport coefficients of boundary theory dual to five dimensional gauge
supergravity.Comment: Version 2, reference added, typos correcte
Detailed Analysis of Proton Decay Rate in the Minimal Supersymmetric SO(10) Model
We consider the minimal supersymmetric SO(10) model, where only one {\bf 10}
and one Higgs multiplets have Yukawa couplings with matter
multiplets. This model has the high predictive power for the Yukawa coupling
matrices consistent with the experimental data of the charged fermion mass
matrices, and all the Yukawa coupling matrices are completely determined once a
few parameters in the model are fixed. This feature is essential for definite
predictions to the proton decay rate through the dimension five operators. We
analyze the proton decay rate for the dominant decay modes by including as many free parameters as possible and varying them.
There are two free parameters in the Yukawa sector, while five in the Higgsino
sector. It is found that an allowed region exists when the free parameters in
the Higgs sector are tuned so as to cancel the proton decay amplitude. The
resultant proton lifetime is proportional to and the allowed
region eventually disappears as becomes large.Comment: 15 pages, 3 figures; the version to appear in JHE
Hydrodynamics from charged black branes
We extend the recent work on fluid-gravity correspondence to charged
black-branes by determining the metric duals to arbitrary charged fluid
configuration up to second order in the boundary derivative expansion. We also
derive the energy-momentum tensor and the charge current for these
configurations up to second order in the boundary derivative expansion. We find
a new term in the charge current when there is a bulk Chern-Simons interaction
thus resolving an earlier discrepancy between thermodynamics of charged
rotating black holes and boundary hydrodynamics. We have also confirmed that
all our expressions are covariant under boundary Weyl-transformations as
expected.Comment: 0+ 31 Pages; v2: 0+33 pages, typos corrected and new sections (in
appendix) added; v3:published versio
Moduli and electromagnetic black brane holography
We investigate the thermodynamic and hydrodynamic properties of 4-dimensional
gauge theories with finite electric charge density in the presence of a
constant magnetic field. Their gravity duals are planar magnetically and
electrically charged AdS black holes in theories that contain a gauge
Chern-Simons term. We present a careful analysis of the near horizon geometry
of these black branes at finite and zero temperature for the case of a scalar
field non-minimally coupled to the electromagnetic field. With the knowledge of
the near horizon data, we obtain analytic expressions for the shear viscosity
coefficient and entropy density, and also study the effect of a generic set of
four derivative interactions on their ratio. We also comment on the attractor
flows of the extremal solutions.Comment: 39 pages, no figures; v2: minor changes, refs. added; v3: typo fixed;
v4: a proof for decoupling of the viscosity mode added in appendix, matches
the published versio
Effects of interactions between the constituents of chitosan-edible films on their physical properties
The main objective of this work was to evaluate the effect of chitosan and plasticizer concentrations and oil presence on the physical and mechanical properties of edible films. The effect of the film constituents and their in-between interactions were studied through the evaluation of permeability, opacity and mechanical properties. The effects of the studied variables (concentrations of chitosan, plasticizer and oil) were analysed according to a 2 3 factorial design. Pareto charts were used to identify the most significant factors in the studied properties (water vapour, oxygen and carbon dioxide permeability; opacity; tensile strength; elongation at break and Young's modulus). When addressing the influence of the interactions between the films' constituents on the properties above, results show that chitosan and plasticizer concentrations are the most significant factors affecting most of the studied properties, while oil incorporation has shown to be of a great importance in the particular case of transport properties (gas permeability), essentially due to its hydrophobicity. Water vapour permeability values (ranging from 1. 62 × 10 -11 to 4. 24 × 10 -11 g m -1 s -1 Pa -1) were half of those reported for cellophane films. Also the mechanical properties (tensile strength values from 0. 43 to 13. 72 MPa and elongation-at-break values from 58. 62% to 166. 70%) were in the range of those reported for LDPE and HDPE. Based on these results, we recommend the use of 1. 5% (w/w) chitosan concentration to produce films, where the oil and plasticizer proportions will have to be adjusted in a case-by-case basis according to the use intended for the material. This work provides a useful guide to the formulation of chitosan-based film-forming solutions for food packaging applications.The author MA Cerqueira is a recipient of a fellowship from Fundacao para a Ciencia e Tecnologia (FCT, SFRH/BD/23897/2005) and BWS Souza is a recipient of a fellowship from the Coordenacao Aperfeicoamento de Pessoal de Nivel Superior, Brazil (Capes, Brazil)
Protective effect of stromal Dickkopf-3 in prostate cancer: opposing roles for TGFBI and ECM-1
Aberrant transforming growth factor–β (TGF-β) signaling is a hallmark of the stromal microenvironment in cancer. Dickkopf-3 (Dkk-3), shown to inhibit TGF-β signaling, is downregulated in prostate cancer and upregulated in the stroma in benign prostatic hyperplasia, but the function of stromal Dkk-3 is unclear. Here we show that DKK3 silencing in WPMY-1 prostate stromal cells increases TGF-β signaling activity and that stromal cellconditioned media inhibit prostate cancer cell invasion in a Dkk-3-dependent manner. DKK3 silencing increased the level of the cell-adhesion regulator TGF-β–induced protein (TGFBI) in stromal and epithelial cell-conditioned media, and recombinant TGFBI increased prostate cancer cell invasion. Reduced expression of Dkk-3 in patient tumors was associated with increased expression of TGFBI. DKK3 silencing reduced the level of extracellular matrix protein-1 (ECM-1) in prostate stromal cell-conditioned media but increased it in epithelial cell-conditioned media, and recombinant ECM-1 inhibited TGFBI-induced prostate cancer cell invasion. Increased ECM1 and DKK3 mRNA expression in prostate tumors was associated with increased relapse-free survival. These observations are consistent with a model in which the loss of Dkk-3 in prostate cancer leads to increased secretion of TGFBI and ECM-1, which have tumor-promoting and tumor-protective roles, respectively. Determining how the balance between the opposing roles of extracellular factors influences prostate carcinogenesis will be key to developing therapies that target the tumor microenvironment
Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV
The production of deuterons and antideuterons in the transverse momentum
range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at
sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A
coalescence analysis comparing the deuteron and antideuteron spectra with those
of protons and antiprotons, has been performed. The coalescence probability is
equal for both deuterons and antideuterons and increases as a function of p_T,
which is consistent with an expanding collision zone. Comparing (anti)proton
yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/-
0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Acidic microenvironment plays a key role in human melanoma progression through a sustained exosome mediated transfer of clinically relevant metastatic molecules
Background: Microenvironment cues involved in melanoma progression are largely unknown. Melanoma is highly influenced in its aggressive phenotype by the changes it determinates in its microenvironment, such as pH decrease, in turn influencing cancer cell invasiveness, progression and tissue remodelling through an abundant secretion of exosomes, dictating cancer strategy to the whole host. A role of exosomes in driving melanoma progression under microenvironmental acidity was never described. Methods: We studied four differently staged human melanoma lines, reflecting melanoma progression, under microenvironmental acidic pHs pressure ranging between pH 6.0-6.7. To estimate exosome secretion as a function of tumor stage and environmental pH, we applied a technique to generate native fluorescent exosomes characterized by vesicles integrity, size, density, markers expression, and quantifiable by direct FACS analysis. Functional roles of exosomes were tested in migration and invasion tests. Then we performed a comparative proteomic analysis of acid versus control exosomes to elucidate a specific signature involved in melanoma progression. Results: We found that metastatic melanoma secretes a higher exosome amount than primary melanoma, and that acidic pH increases exosome secretion when melanoma is in an intermediate stage, i.e. metastatic non-invasive. We were thus able to show that acidic pH influences the intercellular cross-talk mediated by exosomes. In fact when exposed to exosomes produced in an acidic medium, pH naïve melanoma cells acquire migratory and invasive capacities likely due to transfer of metastatic exosomal proteins, favoring cell motility and angiogenesis. A Prognoscan-based meta-analysis study of proteins enriched in acidic exosomes, identified 11 genes (HRAS, GANAB, CFL2, HSP90B1, HSP90AB1, GSN, HSPA1L, NRAS, HSPA5, TIMP3, HYOU1), significantly correlating with poor prognosis, whose high expression was in part confirmed in bioptic samples of lymph node metastases. Conclusions: A crucial step of melanoma progression does occur at melanoma intermediate -stage, when extracellular acidic pH induces an abundant release and intra-tumoral uptake of exosomes. Such exosomes are endowed with pro-invasive molecules of clinical relevance, which may provide a signature of melanoma advancement
Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The invariant differential cross section for inclusive electron production in
p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment
at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4
<= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the
inclusive electron spectrum from semileptonic decays of hadrons carrying heavy
flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via
three independent methods. The resulting electron spectrum from heavy flavor
decays is compared to recent leading and next-to-leading order perturbative QCD
calculations. The total cross section of charm quark-antiquark pair production
is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Recommended from our members
The Way Forward
As understanding of the interdependence between a healthy
planet and healthy people becomes more developed, complex
issues that thread through systems and societies gain new
importance. Beyond the traditional Global Environment
Outlook (GEO) themes addressing air, biodiversity, oceans,
land and fresh water, this GEO-6 assessment addresses
cross-cutting issues worthy of further examination. Using
a systems approach, these cross-cutting issues offer
entry points allowing another dimension for analysing
GEO-6 themes as well as understanding the network of
interconnections throughout earth and human systems.
These cross-cutting issues are grouped according to shared
characteristics: health, environmental disasters, gender,
education and urbanization are grouped as ‘people and
livelihoods’; climate change, polar and mountain regions,
chemicals and waste and wastewater are grouped as
‘changing environments’; and resource use, energy and food
systems are considered as ‘resources and materials’. While
each issue provides useful entry points into GEO-6 themes,
it is important to discuss the state of the environment and
policy context for each one
- …
