Abstract

We consider the minimal supersymmetric SO(10) model, where only one {\bf 10} and one 126ˉ\bar{\bf 126} Higgs multiplets have Yukawa couplings with matter multiplets. This model has the high predictive power for the Yukawa coupling matrices consistent with the experimental data of the charged fermion mass matrices, and all the Yukawa coupling matrices are completely determined once a few parameters in the model are fixed. This feature is essential for definite predictions to the proton decay rate through the dimension five operators. We analyze the proton decay rate for the dominant decay modes pK+νˉp \to K^{+} \bar{\nu} by including as many free parameters as possible and varying them. There are two free parameters in the Yukawa sector, while five in the Higgsino sector. It is found that an allowed region exists when the free parameters in the Higgs sector are tuned so as to cancel the proton decay amplitude. The resultant proton lifetime is proportional to 1/tan2β1/\tan^2 \beta and the allowed region eventually disappears as tanβ\tan \beta becomes large.Comment: 15 pages, 3 figures; the version to appear in JHE

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 18/02/2019