116 research outputs found

    Woolliness assessment in peaches (Cv. Springcrest) by sensory and instrumental means.

    Get PDF
    Mealiness is a negative attribute of sensory texture, characterised by the lack of juiciness without variation of total water content in the tissues. In peaches, mealiness is also known as "woolliness" and "leatheriness". This internal disorder is characterised by the lack of juiciness and flavour. In peaches, it is associated with interna browning near the stone and the incapacity of ripening although there is externa ripe appearance. Woolliness is associated with inadequate cold storage and is considered as a physiological disorder that appears in stone fruits when an unbalanced pectolitic enzyme activity during storage occurs (Kailasapathy and Melton, 1992). Many attempts have been carried out to identify and measure mealiness and woolliness in fruits. The texture of a food product is composed by a wide spectrum of sensory attributes. Consumer defines the texture integrating simultaneously all the sensory attributes. However, an instrument assesses one or several parameters related to a fraction of the texture spectrum (Kramer, 1973). The complexity of sensory analysis by means of trained panels to assess the quality of some producing processes, supports the attempt to estimate texture characteristics by instrumental means. Some studies have been carried out comparing sensory and instrumental methods to assess mealiness and woolliness. The current study is centered on analysis and evaluation of woolliness in peaches and is part of the European project FAIR CT95 0302 "Mealiness in fruits: consumer perception and means for detection". The main objective of this study was to develop procedures to detect woolly peaches by sensory and by instrumental means, as well as to compare both measuring procedures

    Altered fibroblast proteoglycan production in COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Airway remodeling in COPD includes reorganization of the extracellular matrix. Proteoglycans play a crucial role in this process as regulators of the integrity of the extracellular matrix. Altered proteoglycan immunostaining has been demonstrated in COPD lungs and this has been suggested to contribute to the pathogenesis. The major cell type responsible for production and maintenance of ECM constituents, such as proteoglycans, are fibroblasts. Interestingly, it has been proposed that central airways and alveolar lung parenchyma contain distinct fibroblast populations. This study explores the hypothesis that altered depositions of proteoglycans in COPD lungs, and in particular versican and perlecan, is a result of dysregulated fibroblast proteoglycan production.</p> <p>Methods</p> <p>Proliferation, proteoglycan production and the response to TGF-β<sub>1 </sub>were examined <it>in vitro </it>in centrally and distally derived fibroblasts isolated from COPD patients (GOLD stage IV) and from control subjects.</p> <p>Results</p> <p>Phenotypically different fibroblast populations were identified in central airways and in the lung parenchyma. Versican production was higher in distal fibroblasts from COPD patients than from control subjects (p < 0.01). In addition, perlecan production was lower in centrally derived fibroblasts from COPD patients than from control subjects (p < 0.01). TGF-β<sub>1 </sub>triggered similar increases in proteoglycan production in distally derived fibroblasts from COPD patients and control subjects. In contrast, centrally derived fibroblasts from COPD patients were less responsive to TGF-β<sub>1 </sub>than those from control subjects.</p> <p>Conclusions</p> <p>The results show that fibroblasts from COPD patients have alterations in proteoglycan production that may contribute to disease development. Distally derived fibroblasts from COPD patients have enhanced production of versican that may have a negative influence on the elastic recoil. In addition, a lower perlecan production in centrally derived fibroblasts from COPD patients may indicate alterations in bronchial basement membrane integrity in severe COPD.</p

    Perlecan Maintains microvessel integrity in vivo and modulates their formation in vitro

    Get PDF
    Perlecan is a heparan sulfate proteoglycan assembled into the vascular basement membranes (BMs) during vasculogenesis. In the present study we have investigated vessel formation in mice, teratomas and embryoid bodies (EBs) in the absence of perlecan. We found that perlecan was dispensable for blood vessel formation and maturation until embryonic day (E) 12.5. At later stages of development 40% of mutant embryos showed dilated microvessels in brain and skin, which ruptured and led to severe bleedings. Surprisingly, teratomas derived from perlecan-null ES cells showed efficient contribution of perlecan-deficient endothelial cells to an apparently normal tumor vasculature. However, in perlecan-deficient EBs the area occupied by an endothelial network and the number of vessel branches were significantly diminished. Addition of FGF-2 but not VEGF165 rescued the in vitro deficiency of the mutant ES cells. Furthermore, in the absence of perlecan in the EB matrix lower levels of FGFs are bound, stored and available for cell surface presentation. Altogether these findings suggest that perlecan supports the maintenance of brain and skin subendothelial BMs and promotes vasculo- and angiogenesis by modulating FGF-2 function

    Impact of D-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception

    Full text link
    [EN] Citrus fruits are characterized by a complex mixture of volatiles making up their characteristic aromas, being the D-limonene the most abundant one. However, its role on citrus fruit and juice odor is controversial. Transgenic oranges engineered for alterations in the presence or concentration of few related chemical groups enable asking precise questions about their contribution to overall odor, either positive or negative, as perceived by the human nose. Here, either down- or up-regulation of a D-limonene synthase allowed us to infer that a decrease of as much as 51 times in D-limonene and an increase of as much as 3.2 times in linalool in juice were neutral for odor perception while an increase of only 3 times in ethyl esters stimulated the preference of 66% of the judges. The ability to address these questions presents exciting opportunities to understand the basic principles of selection of food. (C) 2016 Elsevier Ltd. All rights reserved.We are grateful to Drs. Lorenzo Zacarias and M. Jesus Rodrigo (IATA-CSIC) for the GC-MS facilities and support. We would like to acknowledge also to Drs. Berta Alquezar and Elsa Pons for their critical review of the manuscript and to all the panelists that participated in the sensory panel. This research is being funded in part by Fundo de Defesa da Citricultura (Fundecitrus).Rodríguez-Baixauli, AM.; Peris-Rodrigo, JE.; Redondo, A.; Shimada, T.; Costell, E.; Carbonell, I.; Rojas, C.... (2017). Impact of D-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception. Food Chemistry. 217:139-150. doi:10.1016/j.foodchem.2016.08.076S13915021

    Cinaciguat prevents the development of pathologic hypertrophy in a rat model of left ventricular pressure overload

    Get PDF
    Pathologic myocardial hypertrophy develops when the heart is chronically pressure-overloaded. Elevated intracellular cGMP-levels have been reported to prevent the development of pathologic myocardial hypertrophy, therefore we investigated the effects of chronic activation of the cGMP producing enzyme, soluble guanylate cyclase by Cinaciguat in a rat model of pressure overload-induced cardiac hypertrophy. Abdominal aortic banding (AAB) was used to evoke pressure overload-induced cardiac hypertrophy in male Wistar rats. Sham operated animals served as controls. Experimental and control groups were treated with 10 mg/kg/day Cinaciguat (Cin) or placebo (Co) p.o. for six weeks, respectively. Pathologic myocardial hypertrophy was present in the AABCo group following 6 weeks of pressure overload of the heart, evidenced by increased relative heart weight, average cardiomyocyte diameter, collagen content and apoptosis. Cinaciguat did not significantly alter blood pressure, but effectively attenuated all features of pathologic myocardial hypertrophy, and normalized functional changes, such as the increase in contractility following AAB. Our results demonstrate that chronic enhancement of cGMP signalling by pharmacological activation of sGC might be a novel therapeutic approach in the prevention of pathologic myocardial hypertrophy

    Loss of Col3a1, the Gene for Ehlers-Danlos Syndrome Type IV, Results in Neocortical Dyslamination

    Get PDF
    It has recently been discovered that Collagen III, the encoded protein of the type IV Ehlers-Danlos Syndrome (EDS) gene, is one of the major constituents of the pial basement membrane (BM) and serves as the ligand for GPR56. Mutations in GPR56 cause a severe human brain malformation called bilateral frontoparietal polymicrogyria, in which neurons transmigrate through the BM causing severe mental retardation and frequent seizures. To further characterize the brain phenotype of Col3a1 knockout mice, we performed a detailed histological analysis. We observed a cobblestone-like cortical malformation, with BM breakdown and marginal zone heterotopias in Col3a1−/− mouse brains. Surprisingly, the pial BM appeared intact at early stages of development but starting as early as embryonic day (E) 11.5, prominent BM defects were observed and accompanied by neuronal overmigration. Although collagen III is expressed in meningeal fibroblasts (MFs), Col3a1−/− MFs present no obvious defects. Furthermore, the expression and posttranslational modification of α-dystroglycan was undisturbed in Col3a1−/− mice. Based on the previous finding that mutations in COL3A1 cause type IV EDS, our study indicates a possible common pathological pathway linking connective tissue diseases and brain malformations

    α5β1 Integrin-Mediated Adhesion to Fibronectin Is Required for Axis Elongation and Somitogenesis in Mice

    Get PDF
    The arginine-glycine-aspartate (RGD) motif in fibronectin (FN) represents the major binding site for α5β1 and αvβ3 integrins. Mice lacking a functional RGD motif in FN (FNRGE/RGE) or α5 integrin develop identical phenotypes characterized by embryonic lethality and a severely shortened posterior trunk with kinked neural tubes. Here we show that the FNRGE/RGE embryos arrest both segmentation and axis elongation. The arrest is evident at about E9.0, corresponding to a stage when gastrulation ceases and the tail bud-derived presomitic mesoderm (PSM) induces α5 integrin expression and assumes axis elongation. At this stage cells of the posterior part of the PSM in wild type embryos are tightly coordinated, express somitic oscillator and cyclic genes required for segmentation, and form a tapered tail bud that extends caudally. In contrast, the posterior PSM cells in FNRGE/RGE embryos lost their tight associations, formed a blunt tail bud unable to extend the body axis, failed to induce the synchronised expression of Notch1 and cyclic genes and cease the formation of new somites. Mechanistically, the interaction of PSM cells with the RGD motif of FN is required for dynamic formation of lamellipodia allowing motility and cell-cell contact formation, as these processes fail when wild type PSM cells are seeded into a FN matrix derived from FNRGE/RGE fibroblasts. Thus, α5β1-mediated adhesion to FN in the PSM regulates the dynamics of membrane protrusions and cell-to-cell communication essential for elongation and segmentation of the body axis

    Basement membrane components are key players in specialized extracellular matrices

    Get PDF
    More than three decades ago, basement membranes (BMs) were described as membrane-like structures capable of isolating a cell from and connecting a cell to its environment. Since this time, it has been revealed that BMs are specialized extracellular matrices (sECMs) with unique components that support important functions including differentiation, proliferation, migration, and chemotaxis of cells during development. The composition of these sECM is as unique as the tissues to which they are localized, opening the possibility that such matrices can fulfill distinct functions. Changes in BM composition play significant roles in facilitating the development of various diseases. Furthermore, tissues have to provide sECM for their stem cells during development and for their adult life. Here, we briefly review the latest research on these unique sECM and their components with a special emphasis on embryonic and adult stem cells and their niches

    The Naked Truth: The Face and Body Sensitive N170 Response Is Enhanced for Nude Bodies

    Get PDF
    Recent event-related potential studies have shown that the occipitotemporal N170 component - best known for its sensitivity to faces - is also sensitive to perception of human bodies. Considering that in the timescale of evolution clothing is a relatively new invention that hides the bodily features relevant for sexual selection and arousal, we investigated whether the early N170 brain response would be enhanced to nude over clothed bodies. In two experiments, we measured N170 responses to nude bodies, bodies wearing swimsuits, clothed bodies, faces, and control stimuli (cars). We found that the N170 amplitude was larger to opposite and same-sex nude vs. clothed bodies. Moreover, the N170 amplitude increased linearly as the amount of clothing decreased from full clothing via swimsuits to nude bodies. Strikingly, the N170 response to nude bodies was even greater than that to faces, and the N170 amplitude to bodies was independent of whether the face of the bodies was visible or not. All human stimuli evoked greater N170 responses than did the control stimulus. Autonomic measurements and self-evaluations showed that nude bodies were affectively more arousing compared to the other stimulus categories. We conclude that the early visual processing of human bodies is sensitive to the visibility of the sex-related features of human bodies and that the visual processing of other people's nude bodies is enhanced in the brain. This enhancement is likely to reflect affective arousal elicited by nude bodies. Such facilitated visual processing of other people's nude bodies is possibly beneficial in identifying potential mating partners and competitors, and for triggering sexual behavior

    Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis

    Get PDF
    Citation: Herrera C, Macêdo JKA, Feoli A, Escalante T, Rucavado A, Gutiérrez JM, et al. (2016) Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis. PLoS Negl Trop Dis 10(4): e0004599. doi:10.1371/journal. pntd.0004599The time-course of the pathological effects induced by the venom of the snake Bothrops asper in muscle tissue was investigated by a combination of histology, proteomic analysis of exudates collected in the vicinity of damaged muscle, and immunodetection of extracellular matrix proteins in exudates. Proteomic assay of exudates has become an excellent new methodological tool to detect key biomarkers of tissue alterations for a more integrative perspective of snake venom-induced pathology. The time-course analysis of the intracellular proteins showed an early presence of cytosolic and mitochondrial proteins in exudates, while cytoskeletal proteins increased later on. This underscores the rapid cytotoxic effect of venom, especially in muscle fibers, due to the action of myotoxic phospholipases A2, followed by the action of proteinases in the cytoskeleton of damaged muscle fibers. Similarly, the early presence of basement membrane (BM) and other extracellular matrix (ECM) proteins in exudates reflects the rapid microvascular damage and hemorrhage induced by snake venom metalloproteinases. The presence of fragments of type IV collagen and perlecan one hour after envenoming suggests that hydrolysis of these mechanically/structurally-relevant BM components plays a key role in the genesis of hemorrhage. On the other hand, the increment of some ECM proteins in the exudate at later time intervals is likely a consequence of the action of endogenous matrix metalloproteinases (MMPs) or of de novo synthesis of ECM proteins during tissue remodeling as part of the inflammatory reaction. Our results offer relevant insights for a more integrative and systematic understanding of the time-course dynamics of muscle tissue damage induced by B. asper venom and possibly other viperid venoms.Universidad de Costa Rica/[741-B4-660]/UCR/Costa RicaUniversidad de Costa Rica/[741-B6-125]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP
    corecore