179 research outputs found

    The Global Spectrum of Plant Form and Function: Enhanced Species-Level Trait Dataset

    Get PDF
    [Abstract] Here we provide the ‘Global Spectrum of Plant Form and Function Dataset’, containing species mean values for six vascular plant traits. Together, these traits –plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass – define the primary axes of variation in plant form and function. The dataset is based on ca. 1 million trait records received via the TRY database (representing ca. 2,500 original publications) and additional unpublished data. It provides 92,159 species mean values for the six traits, covering 46,047 species. The data are complemented by higher-level taxonomic classification and six categorical traits (woodiness, growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and leaf type). Data quality management is based on a probabilistic approach combined with comprehensive validation against expert knowledge and external information. Intense data acquisition and thorough quality control produced the largest and, to our knowledge, most accurate compilation of empirically observed vascular plant species mean traits to date.The study has been supported by the TRY initiative on plant traits (https://www.try-db.org). TRY is an initiative of the Max Planck Institute for Biogeochemistry, bioDISCOVERY/Future Earth (ICSU), the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig and NĂșcleo DiverSus (CONICET- Universidad Nacional de CĂłrdoba, Argentina). The Global Spectrum of Plant Form and Function study has been supported by the European BACI project (Towards a Biosphere Atmosphere change Index, EU grant ID 640176), and grants to SD by FONCyT, CONICET, Universidad Nacional de CĂłrdoba, the Inter-American Institute for Global Change Research, and The Newton Fund (NERC UK – CONICET ARG). VO thanks RSF (#19-14-00038p). Open Access funding enabled and organized by Projekt DEA

    Amino acid uptake among wide-ranging moss species may contribute to their strong position in higher-latitude ecosystems.

    Get PDF
    Plants that can take up amino acids directly from the soil solution may have a competitive advantage in ecosystems where inorganic nitrogen sources are scarce. We hypothesized that diverse mosses in cold, N-stressed ecosystems share this ability. We experimentally tested 11 sub-arctic Swedish moss species of wide-ranging taxa and growth form for their ability to take up double labelled

    Seed dimorphism nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects.

    Get PDF
    Background: Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural environments. Here, we used the seed-dimorphic plant Suaeda aralocaspica to test the hypothesis that seed traits are regulated by multiple maternal effects.Results: Plants grown from brown seeds had a higher brown:black seed ratio than plants from black seeds, and germination percentage of brown seeds was higher than that of black seeds under all conditions tested. However, the coefficient of variation (CV) for size of black seeds was higher than that of brown seeds. Seeds had the smallest CV at low nutrient and high salinity for plants from brown seeds and at low nutrient and low salinity for plants from black seeds. Low levels of nutrients increased size and germinability of black seeds but did not change the seed morph ratio or size and germinability of brown seeds. High levels of salinity decreased seed size but did not change the seed morph ratio. Seeds from high-salinity maternal plants had a higher germination percentage regardless of level of germination salinity.Conclusions: Our study supports the multiple maternal effects hypothesis. Seed dimorphism, nutrient and salinity interacted in determining a range of seed traits of S. aralocaspica via bet-hedging and anticipatory maternal effects. This study highlights the importance of examining different maternal factors and various offspring traits in studies that estimate maternal effects on regeneration. © 2012 Wang et al.; licensee BioMed Central Ltd

    Plant-driven variation in decomposition rates improves projections of global litter stock distribution.

    Get PDF
    Plant litter stocks are critical, regionally for their role in fueling fire regimes and controlling soil fertility, and globally through their feedback to atmospheric CO<sub>2</sub> and climate. Here we employ two global databases linking plant functional types to decomposition rates of wood and leaf litter (Cornwell et al., 2008; Weedon et al., 2009) to improve future projections of climate and carbon cycle using an intermediate complexity Earth System model. Implementing separate wood and leaf litter decomposabilities and their temperature sensitivities for a range of plant functional types yielded a more realistic distribution of litter stocks in all present biomes with the exception of boreal forests and projects a strong increase in global litter stocks by 35 Gt C and a concomitant small decrease in atmospheric CO<sub>2</sub> by 3 ppm by the end of this century. Despite a relatively strong increase in litter stocks, the modified parameterization results in less elevated wildfire emissions because of a litter redistribution towards more humid regions

    The plant traits that drive ecosystems: Evidence from three continents.

    Get PDF
    Question: A set of easily‐measured (‘soft’) plant traits has been identified as potentially useful predictors of ecosystem functioning in previous studies. Here we aimed to discover whether the screening techniques remain operational in widely contrasted circumstances, to test for the existence of axes of variation in the particular sets of traits, and to test for their links with ‘harder’ traits of proven importance to ecosystem functioning. Location: central‐western Argentina, central England, northern upland Iran, and north‐eastern Spain. Recurrent patterns of ecological specialization: Through ordination of a matrix of 640 vascular plant taxa by 12 standardized traits, we detected similar patterns of specialization in the four floras. The first PCA axis was identified as an axis of resource capture, usage and release. PCA axis 2 appeared to be a size‐related axis. Individual PCA for each country showed that the same traits remained valuable as predictors of resource capture and utilization in all of them, despite their major differences in climate, biogeography and land‐use. The results were not significantly driven by particular taxa: the main traits determining PCA axis 1 were very similar in eudicotyledons and monocotyledons and Asteraceae, Fabaceae and Poaceae. Links between recurrent suites of ‘soft’ traits and ‘hard’ traits: The validity of PCA axis 1 as a key predictor of resource capture and utilization was tested by comparisons between this axis and values of more rigorously established predictors (‘hard’ traits) for the floras of Argentina and England. PCA axis 1 was correlated with variation in relative growth rate, leaf nitrogen content, and litter decomposition rate. It also coincided with palatability to model generalist herbivores. Therefore, location on PCA axis 1 can be linked to major ecosystem processes in those habitats where the plants are dominant. Conclusion: We confirm the existence at the global scale of a major axis of evolutionary specialization, previously recognised in several local floras. This axis reflects a fundamental trade‐off between rapid acquisition of resources and conservation of resources within well‐protected tissues. These major trends of specialization were maintained across different environmental situations (including differences in the proximate causes of low productivity, i.e. drought or mineral nutrient deficiency). The trends were also consistent across floras and major phylogenetic groups, and were linked with traits directly relevant to ecosystem processes.Fil: DĂ­az, Sandra Myrna. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; ArgentinaFil: Hodgson, J.G.. The University. Department of Animal and Plant Sciences. Unit of Comparative Plant Ecology; Reino UnidoFil: Thompson, K.. The University. Department of Animal and Plant Sciences. Unit of Comparative Plant Ecology; Reino UnidoFil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; ArgentinaFil: Cornelissen, Johannes H. C.. Free University. Faculty Earth and Life Sciences. Department of Systems Ecology; PaĂ­ses BajosFil: Funes, Guillermo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; ArgentinaFil: PĂ©rez Harguindeguy, Natalia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; ArgentinaFil: Vendramini, Fernanda. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; ArgentinaFil: Falczuk, Valeria. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; ArgentinaFil: Zak, Marcelo RomĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; ArgentinaFil: Khoshnevi, M.. Research Institute of Forests and Rangelands; IrĂĄnFil: PĂ©rez RontomĂ©, M. C.. Instituto Pirenaico de EcologĂ­a; EspañaFil: Shirvani, F. A.. Research Institute of Forests and Rangelands; IrĂĄnFil: Yazdani, S.. Research Institute of Forests and Rangelands; IrĂĄnFil: Abbas Azimi, R. Research Institute of Forests and Rangelands; IrĂĄnFil: Bogaard, A. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Boustani, S.. Research Institute of Forests and Rangelands; IrĂĄnFil: Charles, M.. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Dehghan, M.. Research Institute of Forests and Rangelands; IrĂĄnFil: de Torres Espuny, L.. Instituto Pirenaico de EcologĂ­a; EspañaFil: Guerrero Campo, J.. Instituto Pirenaico de EcologĂ­a; EspañaFil: Hynd, A.. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Jones, G.. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Kowsary, E.. Research Institute of Forests and Rangelands; IrĂĄn. Instituto Pirenaico de EcologĂ­a; EspañaFil: Kazemi Saeed, F.. Research Institute of Forests and Rangelands; IrĂĄnFil: Maestro MartĂ­nez, M.. Instituto Pirenaico de EcologĂ­a; EspañaFil: Romo Diez, A.. Instituto Botanico de Barcelona; EspañaFil: Shaw, S.. Research Institute of Forests and Rangelands; IrĂĄn. The University. Department of Animal and Plant Sciences; Reino UnidoFil: Siavash, B.. Research Institute of Forests and Rangelands; IrĂĄnFil: Villar Salvador, P.. Instituto Pirenaico de EcologĂ­a; Españ

    Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation

    Get PDF
    Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles

    Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation

    Get PDF
    Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, varia- tion in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.Environmental Biolog
    • 

    corecore