19 research outputs found
Breaking the ice: the introduction of biofouling organisms to Antarctica on vessel hulls
1.Few reports exist that describe marine non-native species in the Southern Ocean and near-shore waters around the Antarctic continent. Nevertheless, Antarctica's isolated marine communities, which show high levels of endemism, may be vulnerable to invasion by anthropogenically introduced species from outside Antarctica via vessel hull biofouling.
2.Hull surveys of the British Antarctic Survey's RRS James Clark Ross were undertaken between 2007 and 2014 at Rothera Research Station on the Antarctic Peninsula (Lat. 67°34'S; Long. 68°07'W) to investigate levels of biofouling. In each case, following transit through scouring sea-ice, over 99% of the vessel hull was free of macroscopic fouling communities. However, in some surveys microbial/algal biofilms, balanomorph barnacles and live individuals of the cosmopolitan pelagic barnacle, Conchoderma auritum were found in the vicinity of intake ports, demonstrating the potential for non-native species to be transported to Antarctica on vessel hulls.
3.Increasing ship traffic volumes and declining duration of sea ice in waters to the north and west of the Antarctic Peninsula mean the region may be at increased risk of non-native species introductions. Locations at particular risk may include the waters around popular visitor sites, such as Goudier Island, Neko Harbour, Whalers Bay, Cuverville Island and Half Moon Island, and around northern peninsula research stations.
4.Simple and cost-effective mitigation measures, such as intentionally moving transiting ships briefly through available offshore sea ice to scour off accessible biofouling communities, may substantially reduce hull-borne propagule pressure to the region. Better quantification of the risk of marine non-native species introductions posed by vessel hulls to both Arctic and Antarctic environments, as sea ice patterns and shipping traffic volumes change, will inform the development of appropriate regional and international management responses
How committed are we to monitoring human impacts in Antarctica?
Under the Antarctic Treaty System, environmental monitoring is a legal obligation for signatory nations and an essential tool for managers attempting to minimize local human impacts, but is it given the importance it merits?
Antarctica is a vast frozen continent with an area around 1.5 times that of Europe (14 000 000 km2), but the majority of its terrestrial life is found on multiple outcrops or 'islands' of ice-free coastal ground, with a combined area of ~6000 km2, equivalent to four times that of Greater London (Tin et al 2009). The biological communities of these ice-free terrestrial habitats are dominated by a small number of biological groups, primarily mosses, lichens, microinvertebrates and microorganisms. They include many endemic species, while birds and marine mammals use coastal areas as breeding sites (Chown and Convey 2007)
Breaking the ice: the introduction of biofouling organisms to Antarctica on vessel hulls
Evaluation of non-native species policy development and implementation within the Antarctic Treaty area
Monitoring biological invasion across the broader Antarctic: A baseline and indicator framework
Environmental monitoring and management proposals for the Fildes Region, King George Island, Antarctica
The Antarctic terrestrial environment is under increasing pressure from human activities. The Fildes Region is characterized by high biodiversity, but is also a major logistic centre for the northern Antarctic Peninsula. Different interests, from scientific research, nature conservation, protection of geological and historical values, station operations, transport logistics and tourism, regularly overlap in space and time. This has led to increasing conflict among the multiple uses of the region and breaches of the legal requirements for environmental protection that apply in the area. The aim of this study was to assess the impacts of human activities in the Fildes Region by monitoring the distribution of bird and seal breeding sites and recording human activities and their associated environmental impacts. Data from an initial monitoring period 2003–06 were compared with data from 2008–10. We observed similar or increased levels of air, land and ship traffic, but fewer violations of overflight limits near Antarctic Specially Protected Area No. 150 Ardley Island. Open waste dumping and oil contamination are still major environmental impacts. Scientific and outdoor leisure activities undertaken by station personnel are more frequent than tourist activities and are likely to have a commensurate level of environmental impact. Despite the initial success of some existing management measures, it is essential that scientific and environmental values continue to be safeguarded, otherwise environmental impacts will increase and the habitat will be further degraded. We argue that the Fildes Region should be considered for designation as an Antarctic Specially Managed Area, a measure that has proven effective for environmental management of vulnerable areas of the Antarctic
