190 research outputs found

    Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision?

    Get PDF
    Sphingolipids are major constituents of biological membrane and some of them behave as second messengers involved in the cell fate decision. Ceramide and sphingosine 1-phosphate (S1P) constitute a rheostat system in which ceramide promotes cell death and S1P increases cell survival. We have shown that both sphingolipids are able to trigger autophagy with opposing outcomes on cell survival. Here we discuss and speculate on the diverging functions of the autophagic pathways induced by ceramide and S1P, respectively

    The primary cilium protein folliculin is part of the autophagy signaling pathway to regulate epithelial cell size in response to fluid flow

    Get PDF
    Autophagy is a conserved molecular pathway directly involved in the degradation and recycling of intracellular components. Autophagy is associated with a response to stress situations, such as nutrients deficit, chemical toxicity, mechanical stress or microbial host defense. We have recently shown that primary cilium-dependent autophagy is important to control kidney epithelial cell size in response to fluid flow induced shear stress. Here we show that the ciliary protein folliculin (FLCN) actively participates to the signaling cascade leading to the stimulation of fluid flow-dependent autophagy upstream of the cell size regulation in HK2 kidney epithelial cells. The knockdown of FLCN induces a shortening of the primary cilium, inhibits the activation of AMPK and the recruitment of the autophagy protein ATG16L1 at the primary cilium. Altogether, our results suggest that FLCN is essential in the dialog between autophagy and the primary cilium in epithelial cells to integrate shear stress-dependent signaling

    p27 controls autophagic vesicle trafficking in glucose-deprived cells via the regulation of ATAT1-mediated microtubule acetylation.

    Full text link
    peer reviewedThe cyclin-dependent kinase inhibitor p27Kip1 (p27) has been involved in promoting autophagy and survival in conditions of metabolic stress. While the signaling cascade upstream of p27 leading to its cytoplasmic localization and autophagy induction has been extensively studied, how p27 stimulates the autophagic process remains unclear. Here, we investigated the mechanism by which p27 promotes autophagy upon glucose deprivation. Mouse embryo fibroblasts (MEFs) lacking p27 exhibit a decreased autophagy flux compared to wild-type cells and this is correlated with an abnormal distribution of autophagosomes. Indeed, while autophagosomes are mainly located in the perinuclear area in wild-type cells, they are distributed throughout the cytoplasm in p27-null MEFs. Autophagosome trafficking towards the perinuclear area, where most lysosomes reside, is critical for autophagosome-lysosome fusion and cargo degradation. Vesicle trafficking is mediated by motor proteins, themselves recruited preferentially to acetylated microtubules, and autophagy flux is directly correlated to microtubule acetylation levels. p27-/- MEFs exhibit a marked reduction in microtubule acetylation levels and restoring microtubule acetylation in these cells, either by re-expressing p27 or with deacetylase inhibitors, restores perinuclear positioning of autophagosomes and autophagy flux. Finally, we find that p27 promotes microtubule acetylation by binding to and stabilizing α-tubulin acetyltransferase (ATAT1) in glucose-deprived cells. ATAT1 knockdown results in random distribution of autophagosomes in p27+/+ MEFs and impaired autophagy flux, similar to that observed in p27-/- cells. Overall, in response to glucose starvation, p27 promotes autophagy by facilitating autophagosome trafficking along microtubule tracks by maintaining elevated microtubule acetylation via an ATAT1-dependent mechanism

    Driving next-generation autophagy researchers towards translation (DRIVE), an international PhD training program on autophagy

    Get PDF
    The European autophagy consortium Driving next-generation autophagy researchers towards translation (DRIVE) held its kick-off meeting in Groningen on the 14(th) and 15(th) of June 2018. This Marie Sklodowska-Curie Early Training Network was approved under the European Union's Horizon 2020 Research and Innovation Program and is funded for 4 years. Within DRIVE, 14 European research teams from academia and industry will train 15 PhD students through applied, cross-disciplinary and collaborative macroautophagy/autophagy research. The goal of DRIVE is to stimulate applied approaches in autophagy research and provide training towards translation, while advancing our knowledge on autophagy in specific physiological and pathological states. The strong focus on translation will prepare the PhD students to be at the forefront to exploit autophagy for the development of therapies directly benefitting patients. Thereby, DRIVE will contribute to filling the educational gap that currently exists between academia and industry, and will prepare its PhD students for alternative and highly flexible professional paths.Non peer reviewe

    Driving next-generation autophagy researchers towards translation (DRIVE), an international PhD training program on autophagy

    Get PDF
    The European autophagy consortium Driving next-generation autophagy researchers towards translation (DRIVE) held its kick-off meeting in Groningen on the 14th and 15th of June 2018. This Marie Skłodowska-Curie Early Training Network was approved under the European Union's Horizon 2020 Research and Innovation Program and is funded for 4 years. Within DRIVE, 14 European research teams from academia and industry will train 15 PhD students through applied, cross-disciplinary and collaborative macroautophagy/autophagy research. The goal of DRIVE is to stimulate applied approaches in autophagy research and provide training towards translation, while advancing our knowledge on autophagy in specific physiological and pathological states. The strong focus on translation will prepare the PhD students to be at the forefront to exploit autophagy for the development of therapies directly benefitting patients. Thereby, DRIVE will contribute to filling the educational gap that currently exists between academia and industry, and will prepare its PhD students for alternative and highly flexible professional path

    Autophagy-associated circRNA circCDYL augments autophagy and promotes breast cancer progression

    Get PDF
    Background Although both circular RNAs (circRNAs) and autophagy are associated with the function of breast cancer (BC), whether circRNAs regulate BC progression via autophagy remains unknown. In this study, we aim to explore the regulatory mechanisms and the clinical significance of autophagy-associated circRNAs in BC. Methods Autophagy associated circRNAs were screened by circRNAs deep sequencing and validated by qRT-PCR in BC tissues with high- and low- autophagic level. The biological function of autophagy associated circRNAs were assessed by plate colony formation, cell viability, transwells, flow cytometry and orthotopic animal models. For mechanistic study, RNA immunoprecipitation, circRNAs pull-down, Dual luciferase report assay, Western Blot, Immunofluorescence and Immunohistochemical staining were performed. Results An autophagy associated circRNA circCDYL was elevated by 3.2 folds in BC tissues as compared with the adjacent non-cancerous tissues, and circCDYL promoted autophagic level in BC cells via the miR-1275-ATG7/ULK1 axis; Moreover, circCDYL enhanced the malignant progression of BC cells in vitro and in vivo. Clinically, increased circCDYL in the tumor tissues and serum of BC patients was associated with higher tumor burden, shorter survival and poorer clinical response to therapy. Conclusions circCDYL promotes BC progression via the miR-1275-ATG7/ULK1-autophagic axis and circCDYL could act as a potential prognostic and predictive molecule for breast cancer patients

    Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence:Supporting the next generation of autophagy researchers and fostering international collaborations

    Get PDF
    Recently, NIH has funded a center for autophagy research named the Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center (UNM HSC), with aspirations to promote autophagy research locally, nationally, and internationally. The center has 3 major missions: (i) to support junior faculty in their endeavors to develop investigations in this area and obtain independent funding; (ii) to develop and provide technological platforms to advance autophagy research with emphasis on cellular approaches for high quality reproducible research; and (iii) to foster international collaborations through the formation of an International Council of Affiliate Members and through hosting national and international workshops and symposia. Scientifically, the AIM center is focused on autophagy and its intersections with other processes, with emphasis on both fundamental discoveries and applied translational research.</p

    Beth Levine in memoriam

    Get PDF
    Beth Levine was born on 7 April 1960 in Newark, New Jersey. She went to college at Brown University where she received an A.B. Magna Cum Laude, and she attended medical school at Cornell University Medical College, receiving her MD in 1986. She completed her internship and residency in Internal Medicine at Mount Sinai Hospital in New York, and her fellowship in Infectious Diseases at The Johns Hopkins Hospital. Most recently, Beth was a Professor of Internal Medicine and Microbiology, Director of the Center for Autophagy Research, and holder of the Charles Sprague Distinguished Chair in Biomedical Science at the University of Texas Southwestern Medical Center in Dallas. Beth died on 15 June 2020 from cancer. Beth is survived by her husband, Milton Packer, and their two children, Rachel (26 years old) and Ben (25 years old). Dr. Levine was as an international leader in the field of autophagy research. Her laboratory identified the mammalian autophagy gene BECN1/beclin 1; identified conserved mechanisms underlying the regulation of autophagy (e.g. BCL2-BECN1 complex formation, insulin-like signaling, EGFR, ERBB2/HER2 and AKT1-mediated BECN1 phosphosphorylation); and provided the first evidence that autophagy genes are important in antiviral host defense, tumor suppression, lifespan extension, apoptotic corpse clearance, metazoan development, Na,K-ATPase-regulated cell death, and the beneficial metabolic effects of exercise. She developed a potent autophagy-inducing cell permeable peptide, Tat-beclin 1, which has potential therapeutic applications in a range of diseases. She was a founding Associate Editor of the journal Autophagy and an editorial board member of Cell and Cell Host & Microbe. She has received numerous awards/honors in recognition of her scientific achievement, including: The American Cancer Society Junior Faculty Research Award (1994); election into the American Society of Clinical Investigation (2000); the Ellison Medical Foundation Senior Scholars Award in Global Infectious Diseases (2004); elected member, American Association of Physicians (2005); appointment as a Howard Hughes Medical Institute Investigator (2008); Edith and Peter O’Donnell Award in Medicine (2008); elected fellow, American Association for the Advancement of Science (2012); election into the National Academy of Sciences (2013); election into the Academy of Medicine, Engineering and Science of Texas (2013); the ASCI Stanley J. Korsmeyer Award (2014); Phyllis T. Bodel Women in Medicine Award, Yale University School of Medicine (2018); recipient, Barcroft Medal, Queen’s University Belfast (2018).Fil: An, Zhenyi. No especifíca;Fil: Ballabi, Andrea. No especifíca;Fil: Bennett, Lynda. No especifíca;Fil: Boya, Patricia. No especifíca;Fil: Cecconi, Francesco. No especifíca;Fil: Chiang, Wei Chung. No especifíca;Fil: Codogno, Patrice. No especifíca;Fil: Colombo, Maria Isabel. No especifíca;Fil: Cuervo, Ana Maria. No especifíca;Fil: Debnath, Jayanta. No especifíca;Fil: Deretic, Vojo. No especifíca;Fil: Dikic, Ivan. No especifíca;Fil: Dionne, Keith. No especifíca;Fil: Dong, Xiaonan. No especifíca;Fil: Elazar, Zvulun. No especifíca;Fil: Galluzzi, Lorenzo. No especifíca;Fil: Gentile, Frank. No especifíca;Fil: Griffin, Diane E.. No especifíca;Fil: Hansen, Malene. No especifíca;Fil: Hardwick, J. Marie. No especifíca;Fil: He, Congcong. No especifíca;Fil: Huang, Shu Yi. No especifíca;Fil: Hurley, James. No especifíca;Fil: Jackson, William T.. No especifíca;Fil: Jozefiak, Cindy. No especifíca;Fil: Kitsis, Richard N.. No especifíca;Fil: Klionsky, Daniel J.. No especifíca;Fil: Kroemer, Guido. No especifíca;Fil: Meijer, Alfred J.. No especifíca;Fil: Meléndez, Alicia. No especifíca;Fil: Melino, Gerry. No especifíca;Fil: Mizushima, Noboru. No especifíca;Fil: Murphy, Leon O.. No especifíca;Fil: Nixon, Ralph. No especifíca;Fil: Orvedahl, Anthony. No especifíca;Fil: Pattingre, Sophie. No especifíca;Fil: Piacentini, Mauro. No especifíca;Fil: Reggiori, Fulvio. No especifíca;Fil: Ross, Theodora. No especifíca;Fil: Rubinsztein, David C.. No especifíca;Fil: Ryan, Kevin. No especifíca;Fil: Sadoshima, Junichi. No especifíca;Fil: Schreiber, Stuart L.. No especifíca;Fil: Scott, Frederick. No especifíca;Fil: Sebti, Salwa. No especifíca;Fil: Shiloh, Michael. No especifíca;Fil: Shoji, Sanae. No especifíca;Fil: Simonsen, Anne. No especifíca;Fil: Smith, Haley. No especifíca;Fil: Sumpter, Kathryn M.. No especifíca;Fil: Thompson, Craig B.. No especifíca;Fil: Thorburn, Andrew. No especifíca;Fil: Thumm, Michael. No especifíca;Fil: Tooze, Sharon. No especifíca;Fil: Vaccaro, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Virgin, Herbert W.. No especifíca;Fil: Wang, Fei. No especifíca;Fil: White, Eileen. No especifíca;Fil: Xavier, Ramnik J.. No especifíca;Fil: Yoshimori, Tamotsu. No especifíca;Fil: Yuan, Junying. No especifíca;Fil: Yue, Zhenyu. No especifíca;Fil: Zhong, Qing. No especifíca

    Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence: supporting the next generation of autophagy researchers and fostering international collaborations

    Get PDF
    Recently, NIH has funded a center for autophagy research named the Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center (UNM HSC), with aspirations to promote autophagy research locally, nationally, and internationally. The center has 3 major missions: (i) to support junior faculty in their endeavors to develop investigations in this area and obtain independent funding; (ii) to develop and provide technological platforms to advance autophagy research with emphasis on cellular approaches for high quality reproducible research; and (iii) to foster international collaborations through the formation of an International Council of Affiliate Members and through hosting national and international workshops and symposia. Scientifically, the AIM center is focused on autophagy and its intersections with other processes, with emphasis on both fundamental discoveries and applied translational research
    • …
    corecore