1,356 research outputs found
Understanding the core density profile in TCV H-mode plasmas
Results from a database analysis of H-mode electron density profiles on the
Tokamak \`a Configuration Variable (TCV) in stationary conditions show that the
logarithmic electron density gradient increases with collisionality. By
contrast, usual observations of H-modes showed that the electron density
profiles tend to flatten with increasing collisionality. In this work it is
reinforced that the role of collisionality alone, depending on the parameter
regime, can be rather weak and in these, dominantly electron heated TCV cases,
the electron density gradient is tailored by the underlying turbulence regime,
which is mostly determined by the ratio of the electron to ion temperature and
that of their gradients. Additionally, mostly in ohmic plasmas, the Ware-pinch
can significantly contribute to the density peaking. Qualitative agreement
between the predicted density peaking by quasi-linear gyrokinetic simulations
and the experimental results is found. Quantitative comparison would
necessitate ion temperature measurements, which are lacking in the considered
experimental dataset. However, the simulation results show that it is the
combination of several effects that influences the density peaking in TCV
H-mode plasmas.Comment: 23 pages, 12 figure
TCV divertor upgrade for alternative magnetic configurations
The Swiss Plasma Center (SPC) is planning a divertor upgrade for the TCV tokamak. The upgrade aims at extending the research of conventional and alternative divertor configurations to operational scenarios and divertor regimes of greater relevance for a fusion reactor. The main elements of the upgrade are the installation of an in-vessel structure to form a divertor chamber of variable closure and enhanced diagnostic capabilities, an increase of the pumping capability of the divertor chamber and the addition of new divertor poloidal field coils. The project follows a staged approach and is carried out in parallel with an upgrade of the TCV heating system. First calculations using the EMC3-Eirene code indicate that realistic baffles together with the planned heating upgrade will allow for a significantly higher compression of neutral particles in the divertor, which is a prerequisite to test the power dissipation potential of various divertor configurations
Synergistic use of SAR satellites with deep learning model interpolation for investigating of active landslides in Cuenca, Ecuador
Among the most intense geological disasters, landslides frequently occur throughout the world. These phenomena have been studied using space geodetic techniques, including Global Navigation Satellite Systems (GNSS) and Multi-Temporal Interferometric Synthetic Aperture Radars (MT-InSAR). Nevertheless, complete mapping and analysis of landslides’ surface deformation in most areas can be complicated due to a large diversity in kinematics, such as periods of quiescence and acceleration in the toe and crown. One of these landslides is the Cuenca landslides in Ecuador, where the geological investigation revealed that the toe of the landslides was located in urban areas, with more noticeable deformation effects. In contrast, its crown was located mainly in a rural and green land area. In this study, we show the potential of a synergistic use of COSMO-SkyMed (CSK) and Sentinel-1A (S1A) synthetic aperture radar (SAR) data for comprehensively monitoring the Cuenca landslides. To this aim, we have used Long-Short Term Memory (LSTM) and Convolutional Neural Networks (CNN) as two different Deep Learning Algorithms (DLAs) to integrate results in the temporal and spatial domain, respectively. A cross-comparison of the results was made with the nine GPS-derived deformations and the visual effects (i.e. crack width and pattern) on the field. This validation against GPS observation reveals that the RMSEs of the final MT-InSAR-derived velocity after applying the synergic double band SAR dataset decrease at more than 73% of nine GPS stations.Highlights Synergic MT-InSAR approach for studying landslide deformation in diverse kinematic areas. Utilized DLAs (LSTM and CNNs) for effective temporal and spatial interpolation of InSAR results. Findings emphasize the potential of multi-sensor SAR and DLAs for landslide monitoring regarding improving the RMSE at nine stations with an average of 73%
The survey of Italian springs by the National Hydrographic Service, a forgotten database. Structuring and analysis of a dataset of Campania springs (southern Italy)|Il censimento delle sorgenti italiane del Servizio Idrografico, un database dimenticatoStrutturazione e analisi del dataset delle sorgenti della Campania (Italia meridionale)
The analysis of groundwater resources is a particularly significant aspect of the economic, social and environmental development of the national territory. This is particularly relevant for the Campania region which, although characterized by the most significant aquifer systems of southern Italy, suffers from critical issues related to the progressive increase in demand and climatic variability at different time scales. In this framework, the lack of data concerning the survey of springs, including the minor ones, and of historical discharge
easurements represents the main limitation to a more comprehensive regional hydrogeological characterization. The only source of historical data regarding the systematic and comprehensive survey of springs and discharge measurement is the Publication No. 14 of the National Hydrographic Service of the Ministry of Public Works “The Italian springs. List and description” reporting measures made between
the 1920s and 1940s which was published in distinct volumes for each compartment. Despite its potential relevance, this source has so far been little used in regional hydrogeological studies.
In this paper, a comparative analysis among data of springs derived from the Publication No. 14 and from measurement campaigns made by the Cassa per il Mezzogiorno (Special Project 26), between the 1960s and 1980s for main springs, was carried out for the Campania region. The information available from each source was validated through a cross-check, by means of a comparison of coordinates and a statistical analysis of the characterizing parameters. The new dataset allowed to expand the hydrogeological regional characterization with a higher number of springs, including the minor ones. The results obtained recognize the Publication No. 14 of the National Hydrographic Service as an important source of data to not be overlooked, especially in a condition of historical data shortage, by which can be both carried out regional hydrogeological and temporal analyses as well as identified integrative groundwater resources
Small mammal responses to farming practices in central Argentinian agroecosystems: the use of hierarchical occupancy models
Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement HH(98,y2)≈0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.Peer reviewe
ASSESSMENT OF MT-INSAR PROCESSING TECHNIQUES FOR SLOW-MOVING LANDSLIDES MONITORING IN CUENCA (ECUADOR) THROUGH DOUBLE-BAND SAR SATELLITE
Landslides are among the most intense geological disasters worldwide. Several remote sensing techniques have been used to study these phenomena over the last few decades, including Global Navigation Satellite Systems (GNSS) and Multi-Temporal Interferometric Synthetic Aperture Radars (MT-InSAR), in particular, Small Baseline Subset (SBAS) and Permanent Scatterer Interferometry (PSI). The University of Azuay and highway infrastructure (Cuenca -Ecuador) were affected by slow-moving landslides which in urban areas had more noticeable deformation effects due to their crowns. Furthermore, evidence indicates that the landslide toe was developed in a rural area. To study landslide boundary and deformation kinematics comprehensively, we need to observe two distinct scattering surfaces using SAR imagery (high coherence areas in the urban area and low coherence areas in the rural area). We can also observe different distributions in X-and C-bands due to the rural area covered by vegetation and trees at the toe of the landslide. Two sets of radar images were analyzed and compared for monitoring the aforementioned slow-moving landslide kinematics, including Sentinel1-A (S1 -A) and COSMO-SkyMed (CSK). PSI and SBAS techniques have been used to measure the rate of surface deformation and displacement time series at CSK over the period (2017-2019) and S1-A units over the period (2015-2018), respectively. Furthermore, a GNSS station in the stable area was used as a reference station to integrate the PSI and SBAS results over space. Then, an unsupervised machine learning algorithm (K-medians) was used to determine the most appropriate intervals for preparing mean deformation rate maps. Finally, a comparison was made between the outputs obtained from this study and displacement recorded at two additional GNSS stations located in the area affected by deformation. As a result, by comparing and monitoring double-band SAR satellites and different SAR image processing techniques, it became possible to analyze the whole landslide of our case study appropriately
Droplets generated from toilets during urination as a possible vehicle of carbapenem-resistant Klebsiella pneumoniae
BACKGROUND: In the health care setting, infection control actions are fundamental for containing the dissemination of multidrug-resistant bacteria (MDR). Carbapenemase-producing Enterobacterales (CPE), especially Klebsiella pneumoniae (CR-KP), can spread among patients, although the dynamics of transmission are not fully known. Since CR-KP is present in wastewater and microorganisms are not completely removed from the toilet bowl by flushing, the risk of transmission in settings where toilets are shared should be addressed. We investigated whether urinating generates droplets that can be a vehicle for bacteria and explored the use of an innovative foam to control and eliminate this phenomenon. METHODS: To study droplet formation during urination, we set up an experiment in which different geometrical configurations of toilets could be reproduced and customized. To demonstrate that droplets can mobilize bacteria from the toilet bowl, a standard ceramic toilet was contaminated with a KPC-producing Klebsiella pneumoniae ST101 isolate. Then, we reproduced urination and attached culture dishes to the bottom of the toilet lid for bacterial colony recovery with and without foam. RESULTS: Rebound droplets invariably formed, irrespective of the geometrical configuration of the toilet. In microbiological experiments, we demonstrated that bacteria are always mobilized from the toilet bowl (mean value: 0.11 ± 0.05 CFU/cm2) and showed that a specific foam layer can completely suppress mobilization. CONCLUSIONS: Our study demonstrated that droplets generated from toilets during urination can be a hidden source of CR-KP transmission in settings where toilets are shared among colonized and noncolonized patients
Failure to downregulate the BAF53a subunit of the SWI/SNF chromatin remodeling complex contributes to the differentiation block in rhabdomyosarcoma
n/
Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET
Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate
- …
