158 research outputs found

    Scanner Invariant Representations for Diffusion MRI Harmonization

    Get PDF
    Purpose: In the present work we describe the correction of diffusion-weighted MRI for site and scanner biases using a novel method based on invariant representation. Theory and Methods: Pooled imaging data from multiple sources are subject to variation between the sources. Correcting for these biases has become very important as imaging studies increase in size and multi-site cases become more common. We propose learning an intermediate representation invariant to site/protocol variables, a technique adapted from information theory-based algorithmic fairness; by leveraging the data processing inequality, such a representation can then be used to create an image reconstruction that is uninformative of its original source, yet still faithful to underlying structures. To implement this, we use a deep learning method based on variational auto-encoders (VAE) to construct scanner invariant encodings of the imaging data. Results: To evaluate our method, we use training data from the 2018 MICCAI Computational Diffusion MRI (CDMRI) Challenge Harmonization dataset. Our proposed method shows improvements on independent test data relative to a recently published baseline method on each subtask, mapping data from three different scanning contexts to and from one separate target scanning context. Conclusion: As imaging studies continue to grow, the use of pooled multi-site imaging will similarly increase. Invariant representation presents a strong candidate for the harmonization of these data

    Effect of Age on Variability in the Production of Text-Based Global Inferences

    Get PDF
    As we age, our differences in cognitive skills become more visible, an effect especially true for memory and problem solving skills (i.e., fluid intelligence). However, by contrast with fluid intelligence, few studies have examined variability in measures that rely on one’s world knowledge (i.e., crystallized intelligence). The current study investigated whether age increased the variability in text based global inference generation–a measure of crystallized intelligence. Global inference generation requires the integration of textual information and world knowledge and can be expressed as a gist or lesson. Variability in generating two global inferences for a single text was examined in young-old (62 to 69 years), middle-old (70 to 76 years) and old-old (77 to 94 years) adults. The older two groups showed greater variability, with the middle elderly group being most variable. These findings suggest that variability may be a characteristic of both fluid and crystallized intelligence in aging

    A phase I study of extended dosing with lomeguatrib with temozolomide in patients with advanced melanoma

    Get PDF
    Lomeguatrib, an O6-methylguanine-DNA methyltransferase inactivator, was evaluated in an extended dosing regimen with temozolomide, designed according to pharmacodynamic data from previous studies. Patients with unresectable stage 3 or 4 cutaneous or unknown primary melanoma metastases were treated with lomeguatrib 40 mg, b.i.d. for 10 or 14 days and temozolomide 75–100 mg mβˆ’2 on days 1–5. Drugs were administered orally with cycles repeated every 28 days, for up to six cycles. A total of 32 patients were recruited to the study. Lomeguatrib for 10 days with temozolomide 75 mg mβˆ’2 was established as the optimal extended lomeguatrib dosing schedule, with haematological toxicity being dose limiting. There were two partial responses to treatment giving an overall response rate of 6.25%. Extending lomeguatrib administration beyond that of temozolomide requires a reduced dose of the latter agent. Only limited clinical activity was seen, suggesting no advantage for this regimen over conventional temozolomide administration in the treatment of melanoma

    SAM domain-dependent activity of PfTKL3, an essential tyrosine kinase-like kinase of the human malaria parasite Plasmodiumfalciparum

    Get PDF
    Over the last decade, several protein kinases inhibitors have reached the market for cancer chemotherapy. The kinomes of pathogens represent potentially attractive targets in infectious diseases. The functions of the majority of protein kinases of Plasmodium falciparum, the parasitic protist responsible for the most virulent form of human malaria, remain unknown. Here we present a thorough characterisation of PfTKL3 (PF13_0258), an enzyme that belongs to the tyrosine kinase-like kinase (TKL) group. We demonstrate by reverse genetics that PfTKL3 is essential for asexual parasite proliferation in human erythrocytes. PfTKL3 is expressed in both asexual and gametocytes stages, and in the latter the protein co-localises with cytoskeleton microtubules. Recombinant PfTKL3 displays in vitro autophosphorylation activity and is able to phosphorylate exogenous substrates, and both activities are dramatically dependent on the presence of an N-terminal β€œsterile Ξ±-motif” domain. This study identifies PfTKL3 as a validated drug target amenable to high-throughput screening

    Internal Jugular Vein Cross-Sectional Area and Cerebrospinal Fluid Pulsatility in the Aqueduct of Sylvius: A Comparative Study between Healthy Subjects and Multiple Sclerosis Patients

    Get PDF
    Objectives Constricted cerebral venous outflow has been linked with increased cerebrospinal fluid (CSF) pulsatility in the aqueduct of Sylvius in multiple sclerosis (MS) patients and healthy individuals. This study investigates the relationship between CSF pulsatility and internal jugular vein (IJV) cross-sectional area (CSA) in these two groups, something previously unknown. Methods 65 relapsing-remitting MS patients (50.8% female; mean age = 43.8 years) and 74 healthy controls (HCs) (54.1% female; mean age = 43.9 years) were investigated. CSF flow quantification was performed on cine phase-contrast MRI, while IJV-CSA was calculated using magnetic resonance venography. Statistical analysis involved correlation, and partial least squares correlation analysis (PLSCA). Results PLSCA revealed a significant difference (p<0.001; effect size = 1.072) between MS patients and HCs in the positive relationship between CSF pulsatility and IJV-CSA at C5-T1, something not detected at C2-C4. Controlling for age and cardiovascular risk factors, statistical trends were identified in HCs between: increased net positive CSF flow (NPF) and increased IJV-CSA at C5-C6 (left: r = 0.374, p = 0.016; right: r = 0.364, p = 0.019) and C4 (left: r = 0.361, p = 0.020); and increased net negative CSF flow and increased left IJV-CSA at C5-C6 (r = -0.348, p = 0.026) and C4 (r = -0.324, p = 0.039), whereas in MS patients a trend was only identified between increased NPF and increased left IJV-CSA at C5-C6 (r = 0.351, p = 0.021). Overall, correlations were weaker in MS patients (p = 0.015). Conclusions In healthy adults, increased CSF pulsatility is associated with increased IJV-CSA in the lower cervix (independent of age and cardiovascular risk factors), suggesting a biomechanical link between the two. This relationship is altered in MS patients

    Effect of Temperature Gradient Direction in the Catalyst Nanoparticle on CNTs Growth Mode

    Get PDF
    To improve the understanding on CNT growth modes, the various processes, including thermal CVD, MP-CVD and ECR-CVD, have been used to deposit CNTs on nanoporous SBA-15 and Si wafer substrates with C2H2 and H2 as reaction gases. The experiments to vary process parameter of Ξ”T, defined as the vector quantities of temperature at catalyst top minus it at catalyst bottom, were carried out to demonstrate its effect on the CNT growth mode. The TEM and TGA analyses were used to characterize their growth modes and carbon yields of the processes. The results show that Ξ”T can be used to monitor the temperature gradient direction across the catalyst nanoparticle during the growth stage of CNTs. The results also indicate that the tip-growth CNTs, base-growth CNTs and onion-like carbon are generally fabricated under conditions of Ξ”T > 0, <0 and ~0, respectively. Our proposed growth mechanisms can be successfully adopted to explain why the base- and tip-growth CNTs are common in thermal CVD and plasma-enhanced CVD processes, respectively. Furthermore, our experiments have also successfully demonstrated the possibility to vary Ξ”T to obtain the desired growth mode of CNTs by thermal or plasma-enhanced CVD systems for different applications

    Estimation of PM10-bound As, Cd, Ni and Pb levels by means of statistical modelling: PLSR and ANN approaches

    Get PDF
    Air quality assessment regarding metals and metalloids using experimental measurements is expensive and time consuming due to the cost and time required for the analytical determination of the levels of these pollutants. According to the European Union (EU) Air Quality Framework Directive (Directive 2008/50/EC), other alternatives, such as objective estimation techniques, can be considered for ambient air quality assessment in zones and agglomerations where the level of pollutants is below a certain concentration value known as the lower assessment threshold. These conditions occur in urban areas in Cantabria (northern Spain). This work aims to estimate the levels of As, Cd, Ni and Pb in airborne PM10 at two urban sites in the Cantabria region (Castro Urdiales and Reinosa) using statistical models as objective estimation techniques. These models were developed based on three different approaches: partial least squares regression (PLSR), artificial neural networks (ANNs) and an alternative approach consisting of principal component analysis (PCA) coupled with ANNs (PCA-ANN). Additionally, these models were externally validated using previously unseen data. The results show that the models developed in this work based on PLSR and ANNs fulfil the EU uncertainty requirements for objective estimation techniques and provide an acceptable estimation of the mean values. As a consequence, they could be considered as an alternative to experimental measurements for air quality assessment regarding the aforementioned pollutants in the study areas while saving time and resources.The authors gratefully acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness through the Project CMT2010-16068. The authors also thank the Regional Environment Ministry of the Cantabria Government for providing the PM10 samples at the Castro Urdiales and Reinosa sites

    Interleukin-12p40 Modulates Human Metapneumovirus-Induced Pulmonary Disease in an Acute Mouse Model of Infection

    Get PDF
    The mechanisms that regulate the host immune response induced by human metapneumovirus (hMPV), a newly-recognized member of the Paramyxoviridae family, are largely unknown. Cytokines play an important role in modulating inflammatory responses during viral infections. IL-12p40, a known important mediator in limiting lung inflammation, is induced by hMPV and its production is sustained after the resolution phase of infection suggesting that this cytokine plays a role in the immune response against hMPV. In this work, we demonstrated that in mice deficient in IL-12p40, hMPV infection induced an exacerbated pulmonary inflammatory response and mucus production, altered cytokine response, and decreased lung function. However, hMPV infection in these mice does not have an effect on viral replication. These results identify an important regulatory role of IL-12p40 in hMPV infection

    Down-Regulation of HtrA1 Activates the Epithelial-Mesenchymal Transition and ATM DNA Damage Response Pathways

    Get PDF
    Expression of the serine protease HtrA1 is decreased or abrogated in a variety of human primary cancers, and higher levels of HtrA1 expression are directly related to better response to chemotherapeutics. However, the precise mechanisms leading to HtrA1 down regulation during malignant transformation are unclear. To investigate HtrA1 gene regulation in breast cancer, we characterized expression in primary breast tissues and seven human breast epithelial cell lines, including two non-tumorigenic cell lines. In human breast tissues, HtrA1 expression was prominent in normal ductal glands. In DCIS and in invasive cancers, HtrA1 expression was greatly reduced or lost entirely. HtrA1 staining was also reduced in all of the human breast cancer cell lines, compared with the normal tissue and non-tumorigenic cell line controls. Loss of HtrA1 gene expression was attributable primarily to epigenetic silencing mechanisms, with different mechanisms operative in the various cell lines. To mechanistically examine the functional consequences of HtrA1 loss, we stably reduced and/or overexpressed HtrA1 in the non-tumorigenic MCF10A cell line. Reduction of HtrA1 levels resulted in the epithelial-to-mesenchymal transition with acquisition of mesenchymal phenotypic characteristics, including increased growth rate, migration, and invasion, as well as expression of mesenchymal biomarkers. A concomitant decrease in expression of epithelial biomarkers and all microRNA 200 family members was also observed. Moreover, reduction of HtrA1 expression resulted in activation of the ATM and DNA damage response, whereas overexpression of HtrA1 prevented this activation. Collectively, these results suggest that HtrA1 may function as a tumor suppressor by controlling the epithelial-to-mesenchymal transition, and may function in chemotherapeutic responsiveness by mediating DNA damage response pathways

    Maximizing and stabilizing luminescence from halide perovskites with potassium passivation

    Get PDF
    Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability2 (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yieldβ€”a quantity that must be maximized to obtain high efficiencyβ€”remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.M.A.-J. thanks Nava Technology Limited and Nyak Technology Limited for their funding and technical support. Z.A.-G. acknowledges funding from a Winton Studentship, and ICON Studentship from the Lloyd’s Register Foundation. This project has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement number PIOF-GA-2013-622630, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 756962), and the Royal Society and Tata Group (UF150033). We thank the Engineering and Physical Sciences Research Council (EPSRC) for support. XMaS is a mid-range facility at the European Synchrotron Radiation Facility supported by the EPSRC and we are grateful to the XMaS beamline team staff for their support. We thank Diamond Light Source for access to beamline I09 and staff member T.-L. Lee as well as U. Cappel for assistance during the HAXPES measurements. S.C., C.D. and G.D. acknowledge funding from the ERC under grant number 25961976 PHOTO EM and financial support from the European Union under grant number 77 312483 ESTEEM2. M.A. thanks the president of the UAE’s Distinguished Student Scholarship Program, granted by the Ministry of Presidential Affairs. H.R. and B.P. acknowledge support from the Swedish research council (2014-6019) and the Swedish foundation for strategic research. E.M.H. and T.J.S. were supported by the Netherlands Organization for Scientific Research under the Echo grant number 712.014.007
    • …
    corecore