Purpose: In the present work we describe the correction of diffusion-weighted
MRI for site and scanner biases using a novel method based on invariant
representation.
Theory and Methods: Pooled imaging data from multiple sources are subject to
variation between the sources. Correcting for these biases has become very
important as imaging studies increase in size and multi-site cases become more
common. We propose learning an intermediate representation invariant to
site/protocol variables, a technique adapted from information theory-based
algorithmic fairness; by leveraging the data processing inequality, such a
representation can then be used to create an image reconstruction that is
uninformative of its original source, yet still faithful to underlying
structures. To implement this, we use a deep learning method based on
variational auto-encoders (VAE) to construct scanner invariant encodings of the
imaging data.
Results: To evaluate our method, we use training data from the 2018 MICCAI
Computational Diffusion MRI (CDMRI) Challenge Harmonization dataset. Our
proposed method shows improvements on independent test data relative to a
recently published baseline method on each subtask, mapping data from three
different scanning contexts to and from one separate target scanning context.
Conclusion: As imaging studies continue to grow, the use of pooled multi-site
imaging will similarly increase. Invariant representation presents a strong
candidate for the harmonization of these data