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1. Introduction 12 

 13 

Mathematical modelling for air quality assessment purposes has become increasingly important in recent 14 

years. These models consist of a set of analytical/numerical algorithms that describe the physical and 15 

chemical aspects of a problem and can be divided into two main groups: (i) deterministic models based on 16 

fundamental mathematical descriptions of atmospheric processes, where emissions (causes) generate air 17 

pollution (effects); (ii) statistical (empirical) models based on semiempirical statistical relations between 18 

available data of input variables that are believed to be representative of the process behaviour and 19 

measurements of the target parameters/properties of the system output. Moreover, the European Union Air 20 

Quality Framework Directive establishes that in all zones and agglomerations where the level of pollutants 21 

is below the lower assessment threshold (LAT), which is expressed as a percentage of the corresponding 22 

target/limit value, modelling techniques or objective estimation techniques (or both) shall be sufficient for 23 

the assessment of the ambient air quality (European Council Directive 2008/50/EC). Both statistical and 24 

deterministic methods are currently used in regulatory air pollution forecasting by environmental 25 

authorities. 26 

 27 

Although deterministic models have some advantages over statistical models, such as a full-coverage 3D 28 

domain, in some particular situations they may have some drawbacks in terms of accuracy and input data 29 

uncertainty. According to Hanna (1989), generally, a larger number of input parameters corresponds to a 30 

lower model uncertainty and smaller prediction errors, but unfortunately, by extending the number of input 31 

parameters, the error and uncertainty attached to the input data also increase. Therefore, complex 32 

deterministic models work well when their extensive input data requirements are satisfied, which rarely 33 

occurs with some pollutants, such as As, Ni, Cd and Pb. This is due to the fact that the presence of these 34 

pollutants in the atmosphere normally originates in a variety of pollution sources, not exclusively bound to 35 

specific industrial activities at a certain location. As a consequence, the emission rates of these pollutants 36 

from all the point or area sources are difficult to estimate. A solution to address this problem consists in 37 

performing a spatial disaggregation of emission inventories (Maes et al. 2009). Notwithstanding, there is 38 

an underlying uncertainty associated with the method of disaggregation together with the inherent 39 

uncertainty of the emission inventories themselves. For that reason, for pollutants like the ones under study 40 

in this work, the performance of complex models is often equal to that of simpler methodologies. This fact 41 
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highlights the interest of statistical models (e.g., linear regression techniques and non-linear modelling 42 

techniques) to estimate the ambient air concentration of atmospheric pollutants even though a wide range 43 

of deterministic models, as reviewed by El-Harbawi (2013), have been already developed and studied in 44 

the literature. Nevertheless, techniques such as partial least squares regression (PLSR), which presents 45 

advantages over other statistical linear regression techniques because it combines features from factor 46 

analysis statistical methods, such as principal component analysis (PCA) and linear regression techniques, 47 

as multiple linear regression (MLR), may potentially lead to more accurate estimations than those provided 48 

by MLR or principal component regression (PCR). Furthermore, according to Wold et al. (2001), although 49 

regression techniques such as MLR works reasonably well with problems involving fairly few uncorrelated 50 

independent variables, PLSR is preferable when analysing more intricate problems because it is able to 51 

manage simultaneously numerous and collinear predictor variables and responses. Despite the fact that it 52 

has been widely applied in other disciplines, chemometrics in particular, and used in some works related to 53 

atmospheric pollution (Ogulei et al. 2006; Wingfors et al. 2001), there are few studies on the application of 54 

PLSR to predict atmospheric pollutant concentrations. Pires et al. (2008) tested the ability of different linear 55 

models, including PLSR, to predict daily mean concentrations of particles with an aerodynamic diameter 56 

of less than 10 µm (PM10) in Oporto (Portugal). It was obtained that even though every model fitted the 57 

data similarly well, PLSR shows higher generalization ability than other linear techniques. Polat and 58 

Durduran (2012) used regression models such as least squares regression (LSR), PLSR and MLR to predict 59 

daily particulate matter concentration values in the city of Konya (Turkey). PLSR performance, slightly 60 

better than those of the other regression models, was remarkably improved by considering data pre-61 

processing methods such as output-dependent data scaling (ODDS). Singh et al. (2012) compared PLSR 62 

with non-linear modelling approaches to predict respirable suspended particulate matter (RSPM), SO2 and 63 

NO2 in Lucknow city (India). Both linear and non-linear approaches provided adequate estimations, 64 

especially for the RSPM, with values of correlation coefficient up to 0.9. Nonetheless, non-linear models 65 

performed relatively better than the linear PLSR models. 66 

 67 

With respect to non-linear modelling approaches, artificial neural networks (ANNs) have been suggested 68 

as fair alternatives to statistical linear regression methods because they usually provide equal or superior 69 

results, especially when there is non-linear behaviour involved in the problem under analysis, i.e., cases in 70 

the atmospheric sciences (Gardner and Dorling 1998). For this reason, ANNs are particularly expected to 71 
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produce good predictive results when modelling PM mass concentrations compared with common gaseous 72 

pollutants based on their ability to capture the highly non-linear character of the complex processes that 73 

control the formation, transportation and removal of aerosols in the atmosphere (Grivas and Chaloulakou 74 

2006). Furthermore, ANNs have been extensively applied in the past in the atmospheric literature with 75 

successful results regarding forecasting major gaseous air pollutant concentrations, such as nitrogen oxides 76 

(Gardner and Dorling 1999; Kolehmainen et al. 2001; Lu et al. 2003), sulphur dioxide (Chelani et al. 77 

2002a), and (commonly) ozone (Abdul-Wahab and Al-Alawi 2002; Chaloulakou et al. 2003; Comrie 1997; 78 

Inal 2010; Sousa et al. 2007; Wang et al. 2003; Yi and Prybutok 1996). Moreover, a number of studies have 79 

been conducted using ANN approaches to forecast airborne PM mass concentrations (Caselli et al. 2009; 80 

Chelani 2005; Grivas and Chaloulakou 2006; Hoi et al. 2009; Kim et al. 2009; Papanastasiou et al. 2007; 81 

Paschalidou et al. 2011; Perez and Reyes 2002; Perez and Reyes 2006; Pérez et al. 2000; Voukantsis et al. 82 

2011), predict PM mass concentrations, and predict other gaseous pollutant concentrations (Brunelli et al. 83 

2007; Cai et al. 2009; Hrust et al. 2009; Jiang et al. 2004; Kukkonen et al. 2003; Kurt et al. 2008; Lu et al. 84 

2004; Lu et al. 2003; Niska et al. 2005; Turias et al. 2008). Nevertheless, regarding the PM composition 85 

and estimation of PM constituents, few studies have been conducted. In particular, with respect to the metal 86 

content in PM, Chelani et al. (2002b) used ANNs to predict ambient PM10 and metals, such as Cd, Cr, Fe, 87 

Ni, Pb and Zn, in the air of Jaipur, India, in 1999. It was observed that the ANN models were able to predict 88 

all the pollutant concentrations with low values of root means square error (RMSE). Nonetheless, more 89 

studies related to atmospheric metal concentration estimations by means of ANNs have been conducted, 90 

such as the study performed by Li et al. (2009) in which statistical models based on back-propagation ANNs 91 

and MLR are applied to reconstruct occupational manganese exposure. Apart from ANNs, some research 92 

has been conducted to model metal concentrations in ambient air using other statistical approaches. 93 

Hernández et al. (1992) applied state-space modelling, Box-Jenkins modelling and time series 94 

autoregressive integrated moving average (ARIMA) models to estimate the daily concentrations of air-95 

particulate Fe and Pb in Madrid (Spain). Predictions of daily Fe were better than those of Pb. No difference 96 

being found between State-space and Box-Jenkins models, their outcomes were better than those of 97 

ARIMA models in terms of root mean squared error (RMSE), correlation coefficient and efficiency. 98 

Chelani et al. (2001) used a state-space model coupled with Kalman filter and an autoregressive model with 99 

external input (ARX model) to forecast Pb, Fe and Zn along with RSPM in Delhi (India). The state space 100 

model performed better than the ARX model. On the other hand, Vicente et al. (2012) developed predictive 101 
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models based on multiple regression analysis together with time series (ARIMA) models to predict the 102 

concentration of total suspended particles (TSP), PM10, As, Cd, Ni and Pb in the ambient air of Castellón 103 

(Spain). Furthermore, in a previous study conducted by Arruti et al. (2011), estimations of As, Cd, Ni and 104 

Pb levels in Cantabria (Spain) by means of statistical MLR and PCR models have been conducted. It is 105 

concluded that both represent valid approaches as objective estimation techniques. 106 

 107 

This paper is focused on the development of PLSR and ANN statistical models to estimate the levels of As, 108 

Cd, Ni and Pb in the ambient air of two urban areas: Castro Urdiales and Reinosa in the Cantabria region 109 

(northern Spain). These models are evaluated according to the uncertainty requirements established by the 110 

EU for objective estimation techniques as well as for their ability to estimate the mean concentration. 111 

Additionally, an external validation of the models developed is performed. 112 

 113 

2. Materials and methods 114 

 115 

2.1. Statistical model fundamentals 116 

 117 

2.1.1. Partial least squares regression (PLSR) 118 

 119 

Partial least squares regression is a multivariate calibration technique whose aim is to investigate the 120 

relationship between a set of dependent variables or responses and a set of independent variables known as 121 

predictors. Firstly, in a similar manner to PCA, PLSR performs a decomposition of the original predictor 122 

variables (X-matrix, which consists of environmental observations in this study) by projecting them to a 123 

new space and extracts a set of orthogonal factors, called latent variables, which have the best predictive 124 

ability. Simultaneously, a decomposition of the response variables (Y-matrix, composed of metal level 125 

observations) is also performed. This decomposition step is made in a manner that the projections (scores) 126 

of X have maximum covariance with the projections of Y. This procedure is followed by a regression stage, 127 

where PLSR (just as MLR) creates a linear combination of the predictor variables in order to predict Y 128 

(Abdi 2010).  129 

 130 
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In this work, cross-validation techniques were used to select the more suitable number of significant 131 

components. PLS Toolbox (Eigenvector Research, Inc.) for MATLAB was used in the present study to 132 

develop the PLSR models. 133 

 134 

2.1.2. Artificial neural networks (ANNs) 135 

 136 

Artificial neural networks are computational systems inspired by the biological central nervous system. 137 

They consist of a number of simple process elements, commonly referred to as artificial neurons, which are 138 

logically arranged into layers, highly interconnected, and interact with each other via weighted connections. 139 

Through a supervised training process, in which they are successively presented with a series of input and 140 

associated output data, ANNs are capable to learn to model highly non-linear relationships and, as a result, 141 

to accurately generalise when previously unseen data are presented afterwards. The reader is referred the 142 

handbooks of Bishop (1995) and Hassoun (1995) for a comprehensive description of the ANN technique. 143 

 144 

Plenty of neural network architectures exist. In this work, based on the different ANN approaches found in 145 

the air quality related literature, a multilayer perceptron (MLP) neural network architecture was selected; 146 

details of the architecture are provided in Gardner and Dorling (1998).  147 

 148 

Because the ratio of input variables/number of samples is relatively high in this work due to the number of 149 

samples that were collected by the Regional Environmental Ministry, applying a dimension reduction 150 

technique prior to the ANN models was expected to produce an improvement in the estimations as reported 151 

in some studies (Lu et al. 2003; Sousa et al. 2007). Therefore, an alternative approach in which the PCA is 152 

performed before the development of the ANN models (hereafter known as PCA-ANNs) is considered. 153 

 154 

The ANN models in this study were developed using the Neural Network Toolbox for MATLAB 155 

(MathWorks, Inc.).  156 

 157 

2.2. Study area 158 

 159 
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Two urban areas in the Cantabria region (northern Spain) whose air quality may be influenced by the 160 

presence of metallurgical and other industrial activities in their vicinity were selected: Castro Urdiales and 161 

Reinosa (Fig. 1). The former area is a coastal urban site at the NE zone of Cantabria which has 32258 162 

(2010) inhabitants and encompasses an area of approximately 97 km2. Pollution in this area has a marked 163 

anthropogenic origin which is caused by traffic, not in vain Castro Urdiales is surrounded by the main 164 

national highway in the northern part of Spain. Pollution also proceeds from industrial activities, such as 165 

chemical and metallurgical plants and an oil refinery, located 10-30 km SE (near the city of Bilbao). The 166 

monitoring station is located at 43º22’53”N, 3º13’22” W and 20 m above sea level, in the core of the urban 167 

area. In contrast, Reinosa, covering nearly 4 km2 with approximately 10277 inhabitants (2010), is located 168 

inland, at about 50 km off the shore, in the southern part of the region. The sampling station is located at 169 

43º00’01”N, 4º08’13”W and 850 m above sea level. It is in close proximity to a steel manufacturing plant 170 

and also to a national highway, main exit route from Cantabria, which establishes connection with the 171 

central Iberian Peninsula.  172 

 173 

2.3. Input dataset 174 

 175 

The dataset used in this study is divided into response variables and predictor variables. The former data 176 

consist of As, Cd, Ni and Pb concentrations (ng m-3) in airborne PM10 for the period from 2008 to 2010 at 177 

the two study sites. The PM10 sampling was performed by the Cantabrian Regional Environmental Ministry 178 

according to the reference method for the determination of the PM10 fraction of suspended particulate matter 179 

detailed in standard UNE-EN 12341:1999. 48h averaged samples of PM10 were taken once every two weeks 180 

for the period from 2008 to 2009 and 24h averaged samples of PM10 were collected for 2010 with a weekly 181 

sampling frequency. The content of a number of metals and metalloids in the PM10 samples was determined 182 

by our research group based on the standard method for the measurement of Pb, Cd, As and Ni in the PM10 183 

fraction of the suspended particulate matter described in standard UNE-EN 14902:2006. According to this, 184 

after gravimetric determination of the particle concentration levels, the PM10 filters were treated with 185 

microwave-assisted acid digestion to extract the analytes into an aqueous solution prior to the analytical 186 

determination of their concentration by inductively coupled plasma mass spectroscopy (ICP-MS). Further 187 

details of this analytical method can be found in Arruti et al. (2010).  188 

 189 
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As a consequence of the high cost associated with the analytical determination of the content of this sort of 190 

pollutants in particulate matter, a considerably low number of samples was selected for the analysis. 191 

However, this number was sufficient to guarantee the minimum time coverage (14%) for indicative 192 

measurements as European Council Directive 2004/107/EC requires. 193 

 194 

The predictor variables are qualitative or nominal variables (Table 1) that take into account seasonal effects, 195 

Saharan dust intrusion and weekend effects or quantitative or continuous variables, namely, meteorological 196 

data and major atmospheric pollutant concentration, which are detailed in Table 2. With respect to the 197 

nominal variables, the information regarding the occurrence of Saharan dust intrusion events has been 198 

obtained from annual reports on African dust episodes over Spain (MAGRAMA 2015), which are 199 

developed by the Spanish National Research Council (CSIC) in collaboration with the Spanish Ministry of 200 

Agriculture, Food and Environment. In contrast, the continuous variables are measured automatically in 201 

real time (maximum time resolution of fifteen minutes) at the monitoring stations of the Cantabrian 202 

Regional Air Quality Monitoring Network located in the study sites and are available at the Regional 203 

Environment Ministry website. Average values of continuous variables were calculated according to the 204 

corresponding duration of the PM10 sampling periods (48 hours for 2008-2009 samples and 24 hours for 205 

2010 samples). Moreover, as regards to PM10 concentration, it has been included as input variable in the 206 

form of natural logarithm because of this transformation being reported to improve the performance of 207 

regression models (Arruti et al. 2011). 208 

 209 

Prior to model development it is always rather convenient to take account of the application of a data pre-210 

processing method, especially if there is lack of knowledge regarding the relative importance of the 211 

variables. In this study, the following data pre-treatment procedure was applied: 212 

 213 

1. Dependent variable normalisation by the respective LAT in order to minimise scale effects. 214 

2. Input variable auto-scaling, subtracting the mean and dividing by the standard deviation, in an attempt 215 

to make each variable a priori equally important. 216 

3. Multivariate outlier identification and removal method based on Mahalanobis distance. It is a well-217 

known classical approach that computes the Mahalanobis distance (MD) of each observation as an 218 

indicative measure of the distance of each data point from the centre of the multivariate data cloud. By 219 
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convention, this method identifies as outliers those observations with a large MD (exceeding the 99% 220 

quantile of a chi-square distribution). 221 

 222 

Apart from the data pre-processing treatment, over-fitting is another decisive matter that must be taken into 223 

consideration beforehand so that it could be prevented.  This term refers to the circumstance that occurs 224 

when a model fit the data in such a manner that not only captures the underlying trend in the data but also 225 

the unexplained variation or statistical noise and therefore it is unable to generalize properly - that is, to 226 

correctly perform when new observations are presented.  In order to overcome this phenomenon it is highly 227 

recommended the consideration of an additional verification or cross-validation data subset, besides the 228 

training or fitting dataset, to check the models performance during the model development stage (usually 229 

known as calibration or fitting for PLSR and training for ANNs). Additionally, if the generalisation ability 230 

of a model is to be tested, a subset of samples has to be kept in reserve to perform an external validation 231 

with previously unused observations once the models have been developed. For that reason, the complete 232 

dataset was divided into three different subsets: 60% for training/fitting, 20% for verification and 20% for 233 

external validation. Data partition of the available data, often randomly conducted, was carried out in this 234 

work by means of the Kennard-Stone algorithm (Kennard and Stone 1969) with the purpose that the 235 

resulting subsets are statistically representative. This data division method, originally developed for design 236 

of experiments, has been traditionally applied to select calibration samples extracting subsets, as much 237 

diverse as possible, from a large set of candidate samples based on the Euclidean distance, which is 238 

employed as a measure of similarity between samples (the lower the Euclidean distance, the higher the 239 

similarity). Initially, the pair of samples with the largest Euclidean distance are selected. Subsequently, by 240 

means of an iterative process that concludes when the number of required objects is reached, more samples 241 

are selected, maximizing the minimal Euclidean distances between those already selected and the remaining 242 

samples.  243 

 244 

2.4. Model evaluation 245 

 246 

The main criteria employed in this work to determine whether a model is suitable for air quality assessment 247 

purposes is principally based on two aspects: (i) the fulfilment of the European Union uncertainty 248 

requirements for objective estimation techniques, which are shown in Table 3 and (ii) the accuracy of 249 
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estimated mean values. Additionally, a number of statistical parameters has been considered to evaluate the 250 

modelling performance and are also shown in Table 3. 251 

 252 

3. Results and discussion 253 

 254 

3.1. As, Cd, Ni and Pb levels in Castro Urdiales and Reinosa 255 

 256 

Fig. 2 summarises the levels of As, Cd, Ni and Pb in PM10 at Castro Urdiales and Reinosa for the period 257 

from 2008 to 2010. According to the European Council Directive 2008/50/EC, because these levels did not 258 

exceed their lower assessment threshold and did not present significant variations throughout the period of 259 

study, modelling and objective estimation techniques are permitted as an alternative method to experimental 260 

measurements for air quality assessment. 261 

 262 

3.2. Statistical estimation models for Castro Urdiales 263 

 264 

Table 4 shows the results relating to the best-developed models at the Castro Urdiales site for the four 265 

pollutants under study using the three approaches: PLSR, ANNs and PCA coupled with ANNs. The results 266 

obtained for both the training and the external validation subsets are presented.  267 

 268 

Limit/target values for As, Cd, Ni and Pb in ambient air in the European regulations are given in annual 269 

mean concentration values. Therefore, attention should be paid to the estimated mean concentrations in the 270 

study period. The normalised mean concentrations are presented in Table 4. The accuracy in the estimation 271 

of the mean concentration is evaluated by means of the fractional bias (FB) index. In this respect, the 272 

estimations are more accurate for the training step. At this step, PLSR provides a FB index lower than those 273 

obtained for ANNs and PCA-ANNs because the mean metal concentration estimated by the PLSR models 274 

are equal —up to two significant figures— to the corresponding observed values and that, according to the 275 

corresponding equation (Table 3), yields lower FB index values. However, the differences between 276 

estimated and observed mean concentrations using the three considered techniques are not remarkably 277 

significant. As for external validation, the precision is inferior to that of the training phase. 278 

 279 
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In a more illustrative way, Fig. 3 represents the mean metal concentration estimation expressed as a 280 

percentage of the corresponding limit/target value. The vertical axis is presented in logarithmic scale. The 281 

green area represents the zone below the LAT, the yellow area represents the zone between the UAT and 282 

the LAT, and the red area is the zone between the limit/target value and the UAT. Fig. 3 shows that, even 283 

though there are some differences between the estimated and the observed mean levels, they are similar. 284 

Moreover, because the observed metal(loid) levels are within the green area, well below the LAT, even 285 

higher discrepancy could be allowed. Therefore, the developed models provide satisfactory mean 286 

concentration estimations. 287 

 288 

It is necessary to validate objective estimation techniques in the context of the EU Directives in terms of 289 

uncertainty. In this sense, according to Arruti et al. (2011), two indices have been considered: on the one 290 

hand, the RME, which is defined as the largest concentration difference of all percentile differences 291 

normalized by the respective observed value (Fleming and Stern 2007); on the other hand, the RDE, which 292 

evaluates the accuracy in the estimation of the observation closest to the limit/target value (Denby 2009). 293 

As observed in Table 4, the values of these indices for the four pollutants in question for the training and 294 

the external validation are well below 100%, which is the maximum permissible uncertainty limit for using 295 

objective estimation techniques as air quality assessment tools according to the European Council Directive 296 

2008/50/EC. For As, Ni and Cd, ANNs provide higher RME values than PLSR and PCA-ANN. In the 297 

majority of cases, except for the As and Cd ANN models, the RME values are below 50%, which is the 298 

uncertainty requirement for modelling techniques. In all cases, the RDE values are below 10%. However, 299 

these indices have some limitations: it has been discussed that RME is sensitive to the presence of outliers 300 

resulting in an increase of the uncertainty values (Fleming and Stern 2007); RDE only evaluates the 301 

uncertainty of just one sample, the closest to the limit/target value. 302 

 303 

From a scientific point of view, apart from a precise estimation of mean values to comply with the policy 304 

framework, a model should be able to correctly describe the temporal variations of dependent variables. 305 

For this purpose, a set of statistics has been used in this work. In the first place, the correlation coefficient 306 

is employed to measure the goodness of fit between the observed and the estimated values. The results 307 

show that PLSR correlation coefficients, which are within the range of 0.6-0.7, are less variable than those 308 

of ANNs and PCA-ANNs: whereas the highest correlation coefficient, an r value of 0.82, is found when 309 
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using ANNs for Pb training, the correlation coefficients for As and Cd ANN models are significantly low 310 

and therefore unacceptable. This could be explained because in the area of study As and Cd tend to be in 311 

lower concentration than Ni and Pb and consequently in the period of study a number of samples have 312 

levels of As and Cd below their detection limits. As a result, models are trained to produce the same output 313 

from different inputs, a detrimental contradiction that may negatively affect the estimation of the rest of the 314 

samples. Moreover, as expected, the r values for external validation are often lower than those for training. 315 

Nonetheless, the PCA-ANN external validation correlation coefficients are systematically below 0.5. 316 

 317 

In addition to the correlation coefficient, the precision of the individual sample concentration estimation is 318 

quantified by the RMSE, the NMSE and the FV, (see equations in Table 3). The RMSE values, which 319 

provide information regarding the differences between the observed and estimated concentrations, are 320 

shown in Table 4. However, to compare these differences for different approaches and pollutants, a 321 

normalised version of this parameter (NMSE) is more preferable because it does not take into account the 322 

range of the independent variable. In general, the three considered approaches provide low values of NMSE 323 

in the order of 10-1.  324 

 325 

With respect to the FV index, positive values can be observed in Table 4; this indicates that the estimated 326 

variance is lower than the observed variance. Therefore, estimated values are less dispersed than observed 327 

values, which tend to be more distanced from the mean value. This fact, together with a positive FB 328 

corresponding to a slight mean value underestimation, indicates that there are some shortcomings in the 329 

model capacity to perfectly describe all the concentration variations, especially regarding peak values. 330 

Nevertheless, despite no substantial differences being found when comparing PLSR and ANNs, in general 331 

both models are able to capture the underlying trend and provide temporal variations with similar shape to 332 

that of the observed values as depicted in Fig. 4 for Pb and Ni in the training stage.  333 

 334 

Based on the results obtained, there is no improvement associated with considering a dimension reduction 335 

technique such as PCA before the development of the ANNs. This could be accounted for the fact that most 336 

ANNs suffer less from the curse of dimensionality than some other techniques, as they can concentrate on 337 

a lower dimensional section of the high-dimensional space, which may be done, for instance, by 338 

disregarding completely an input, setting the corresponding weights to zero. Hence, for this specific 339 
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application dimensionality reduction has been proven not to be effective because removing input variables 340 

from the analysis entails a loss on the predictive ability of the model.   341 

 342 

Furthermore, because these models are devised to be used when the pollutant levels are sufficiently lower 343 

at a certain location, in principle the moderated inaccuracy to estimate peak values should not represent an 344 

unacceptable drawback to acknowledge these models as proper approaches complying with regulatory 345 

requirements: the uncertainty values obtained with the developed models and the accuracy in the estimation 346 

of the mean values would be favourable enough from a regulatory perspective. Nonetheless, some 347 

refinement is possible because, as mentioned, there are some difficulties in estimating the highest observed 348 

concentrations, which are underestimated.  In this regard, further work involving new additional input 349 

variables and the enlargement of the database with additional samples from different periods of time would 350 

be recommendable.  351 

 352 

3.3. Statistical estimation models for Reinosa 353 

 354 

Analogously to the results at the Castro Urdiales site, the statistical parameters corresponding to the best-355 

developed models at the Reinosa site are presented in Table 5.  356 

 357 

Regarding the uncertainty indices, it is observed that, as in Castro Urdiales, the RME and RDE values at 358 

the Reinosa site are below 100% for the estimations obtained with the three different models developed for 359 

the four pollutants. Hence, the quality objectives for ambient air quality assessment by means of objective 360 

estimation techniques are met. However, there is a general increase in the obtained RDE values, especially 361 

for As and Ni, which are significantly greater than those obtained at the Castro Urdiales site.  362 

 363 

In relation to the mean values, again, PLSR provides the lowest FB training values, but the FB external 364 

validation values are greater than the training values. Although there are still evident differences between 365 

the observed and estimated mean concentrations, 90% of the estimations do not differ by more than 50%. 366 

Therefore, as shown in Fig. 5, the three developed models provide satisfactory estimations. Nonetheless, a 367 

substantial increase in FB values is found in Reinosa compared with Castro Urdiales.  368 

 369 
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Results at the Reinosa site present more variability between the training and external validation correlation 370 

coefficient values for each pollutant than the results at the Castro Urdiales site, which may be partially 371 

accounted for the higher inherent variance of metal levels in Reinosa compared to those obtained in Castro 372 

Urdiales. However, the ANN correlation coefficient values are generally equal or superior to those of PLSR 373 

and PCA-ANNs. As for the errors in the individual sample concentration estimations, the NMSE values for 374 

Reinosa and Castro Urdiales are within the same range. Nevertheless, the FV values are slightly greater in 375 

Reinosa than in Castro Urdiales but still lower than 1.0, which represents 50% of the observed variance.  376 

 377 

Results prove that these models provide an acceptable performance in varied areas of a region, even when 378 

there is a complex pollution framework with diverse emission sources, as is the case of Castro Urdiales. 379 

Nevertheless, because the models were trained on data for particular sites and having been demonstrated 380 

that the precision in the estimation is dependent on the specific location, these models can therefore only 381 

be used with confidence at those sites. This dependence is especially pronounced in the ANN models, which 382 

produced a higher variability in the results than the PLSR or PCA-ANN models. This may be influenced 383 

by the fact that a limited number of samples are used for developing the models due to the unavailability 384 

of additional observations stemming from their costliness and time consumption. Thus, it could be inferred 385 

that for small datasets, linear regression techniques can work as well as non-linear modelling approaches 386 

in terms of the estimation of metal(loid) levels in ambient air. 387 

 388 

4. Conclusions 389 

 390 
Statistical models are developed as objective estimation techniques to estimate the As, Cd, Ni and Pb in 391 

ambient air at a local scale in two urban areas in the Cantabria region (northern Spain): Castro Urdiales and 392 

Reinosa. These models were built based on linear regression techniques, partial least squares regression 393 

(PLSR), and the non-linear modelling technique of artificial neural networks (ANNs). Additionally, an 394 

alternative approach is considered that performs principal component analysis (PCA) prior to the ANN 395 

analysis (PCA-ANNs). Furthermore, these models were externally validated using previously unseen data. 396 

 397 

The models are evaluated by means of a number of statistical parameters, including uncertainty indices, to 398 

determine if they comply with the EU quality requirements for objective estimation techniques. 399 
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Additionally, the model performance in estimating the individual sample concentrations is evaluated by 400 

means of a number of statistical parameters, including a correlation coefficient, RMSE, NMSE and FV.  401 

 402 

Based on the results obtained, PLSR and ANN techniques are acceptable alternatives to estimate the mean 403 

concentration of As, Cd, Ni and Pb for the period of study in the two considered sites while fulfilling the 404 

uncertainty requirements for objective estimation techniques established in the EU Directives. 405 

Consequently, PLSR and ANN-based statistical models represent a proper alternative to experimental 406 

measurements for air quality assessment purposes in the area of study. However, ANNs have not 407 

demonstrated to offer a clear superior performance over the linear regression technique, what may be 408 

attributed to the modest size of the available database. Furthermore, the three considered approaches had 409 

some difficulties providing accurate estimations of the levels of individual samples, particularly for the 410 

external validation subset. Moreover, the application of PCA before the ANN model development did not 411 

yield an improvement of the models.  412 

 413 
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Figure captions 

 

Fig. 1 Location of the monitoring stations 

 

Fig. 2 As, Cd, Ni and Pb levels in PM10, normalized with respect to their corresponding LAT, for the period of study at 

(a) the Castro Urdiales site and (b) the Reinosa site. The 2008 mean values are obtained from Arruti et al. (2011). LAT: 

250 ng m-3 (Pb), 2.4 ng m-3 (As), 10 ng m-3 (Ni), 2 ng m-3 (Cd) 

 

Fig. 3 Comparison between the observed and estimated mean concentrations at the Castro Urdiales site and their 

respective assessment thresholds and limit/target values. (a) Pb; (b) As; (c) Ni and (d) Cd. TV: 500 ng m-3 (Pb), 6 ng m-3 

(As), 20 ng m-3 (Ni), 5 ng m-3 (Cd); UAT: 70% (Pb and Ni), 60% (As and Cd); LAT: 50% (Pb and Ni), 40% (As and Cd) 

 

Fig. 4 Fitting of the Pb and Ni models for the training subset at the Castro Urdiales site 

 

Fig. 5 Comparison between the observed and estimated mean concentrations at the Reinosa site and their respective 

assessment thresholds and limit/target values. (a) Pb; (b) As; (c) Ni and (d) Cd. TV: 500 ng m-3 (Pb), 6 ng m-3 (As), 20 

ng m-3 (Ni), 5 ng m-3 (Cd); UAT: 70% (Pb and Ni), 60% (As and Cd); LAT: 50% (Pb and Ni), 40% (As and Cd) 
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Table 1. List of nominal variables used as input for the models 

Notation Description Codification 

SE Season 1: Winter; 2: Spring; 3: Summer; 4: Fall 

SD Saharan dust intrusion 0: No intrusion; 1: Intrusion 

WE Weekend 0: Working day; 1: Weekend 
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Table 2. List of continuous variables used as input for the models. 

Notation Descriptiona Type Units 

LnPM10 Average natural logarithm of PM10 concentration (µg m-3) Major air pollutant - 

SO2 Average concentration of sulphur dioxide Major air pollutant µg m-3 

O3 Average concentration of ozone Major air pollutant µg m-3 

NOx Average concentration of nitrogen oxides Major air pollutant µg m-3 

T Average temperature Meteorological ºC 

RH Average relative humidity Meteorological % 

WD Prevailing wind direction Meteorological º 

WS Prevailing wind speed Meteorological ms-1 

P Average pressure Meteorological mbar 

PP Cumulative precipitation Meteorological L m-2 

a Average values were calculated according to the corresponding duration of the PM10 sampling periods 
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Table 3. Statistical parameters used for evaluating the model performance 

Evaluation  Statistic Equation 

EU Uncertainty 
Relative maximum error without timing 

 

Relative directive error 
 

Mean concentration Fractional bias 

 

Performance 

Correlation coefficient 

 

Root mean square error 

 

Normalised mean square error 

 

Fractional variance 
 

 

RME = max  CO,p-CE,p  CO,p  
RDE =  CO,LV-CE,LV LV  

FB =
CO
    - CE

    

0.5  CO
    + CE

     
 

r =  
  CO,i - CO

      CE,i - CE
     n

i=1

 σOσE

  

RMSE = 
1

N
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NMSE =
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Table 4. Training and external validation performance indices of the various developed models at the Castro Urdiales site 

aT: Training; V: External validation 
b O: Observed; E: Estimated 
c Not calculated (n.c.) 

 

Pollutant Model Subseta 

EU Uncertainty  Mean Concentrationb  Performance 

RME 

(%) 
RDE (%) 

 
CO 102 CE 102 FB 102 

 
r RMSE 102 

NMSE 10 
FV 10 

Pb 

PLSR 
T 26.7 0.09  2.79 2.79 -9.8 10-15  0.704 1.77 4.04 3.48 

V 49.6 0.71  4.13 3.01 31.4  0.620 2.71 5.90 7.44 

              
ANN 

T 34.5 0.66  2.67 2.70 -0.9  0.820 1.44 2.88 1.98 

V 32.0 1.76  4.34 3.48 22.0  0.676 2.41 3.85 2.47 

              PCA-

ANN 

T 36.9 0.41  3.14 3.11 1.0  0.681 2.03 4.25 4.41 

V 30.6 0.07  3.08 3.43 -10.8  0.269 2.60 6.41 3.60 

              

As 

PLSR 
T 42.8 0.30  6.66 6.66 -4.2 10-12  0.656 5.17 6.02 4.16 

V 34.8 1.74  5.32 5.50 -3.4  0.629 4.63 7.34 0.88 

              
ANN 

T 77.0 0.17  6.96 6.81 2.1  0.130 6.96 10.22 12.74 

V 66.3 0.25  5.32 6.81 -24.6  0.193 5.70 8.99 11.26 

              PCA-

ANN 

T 54.6 0.86  6.96 6.35 9.1  0.536 5.87 7.80 7.36 

V 33.5 0.96  5.55 6.33 -13.3  0.190 5.72 9.30 2.77 

              

Ni 

PLSR 
T 34.7 10.83  27.61 27.61 3.1 10-13  0.642 21.52 6.07 4.36 

V 22.1 2.64  18.91 22.67 -18.1  0.663 12.27 3.51 -0.97 

              
ANN 

T 45.0 6.19  28.27 23.30 19.3  0.676 21.59 7.08 6.18 
V 32.6 1.24  19.36 23.71 -20.0  0.387 16.15 5.67 -0.58 

              PCA-
ANN 

T 33.9 1.77  24.54 26.01 -5.8  0.643 17.60 4.85 4.92 
V 25.6 2.06  23.64 23.42 0.9  0.216 21.19 8.11 1.64 

              

Cd 

PLSR 
T 40.9 0.14  3.75 3.75 -1.1 10-12  0.672 3.36 8.03 3.92 

V 46.2 0.86  4.55 3.52 25.6  0.628 3.42 7.30 4.69 

              
ANN 

T n.c.c n.c.c  n.c.c n.c.c n.c.c  n.c.c n.c.c n.c.c n.c.c 

V n.c.c n.c.c  n.c.c n.c.c n.c.c  n.c.c n.c.c n.c.c n.c.c 

              PCA-

ANN 

T 33.5 0.47  3.84 3.88 -1.1  0.613 3.11 6.49 5.36 

V 41.5 0.42  3.56 3.62 -1.7  0.534 3.11 7.48 5.05 
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Table 5. Training and external validation performance indices of the various developed models at the Reinosa site 

aT: Training; V: External validation 
b O: Observed; E: Estimated 

 

Pollutant Model Subseta 

EU Uncertainty  Mean Concentrationb  Performance 

RME 

(%) 
RDE (%) 

 
CO 102 CE 102 FB 102 

 
r RMSE 102 

NMSE 10 
FV 10 

Pb 

PLSR 
T 31.1 0.61  5.60 5.60 -6.2 10-14  0.723 3.48 3.86 3.21 

V 14.0 0.21  5.11 6.01 -16.2  0.553 3.76 4.60 0.17 

              
ANN 

T 30.3 0.83  6.01 5.71 5.2  0.829 2.86 2.38 3.38 

V 35.9 1.07  5.11 5.95 -15.2  0.563 3.58 4.22 1.05 

              PCA-

ANN 

T 42.3 1.48  5.50 6.02 -8.9  0.679 3.77 4.29 7.17 

V 42.2 1.38  4.96 5.68 -13.4  0.374 3.80 5.13 9.70 

              

As 

PLSR 
T 28.2 1.25  13.61 13.61 4.1 10-14  0.446 8.68 4.07 7.67 

V 31.7 5.66  15.12 12.46 19.3  0.441 12.66 8.51 7.23 

              
ANN 

T 23.6 3.56  14.47 13.39 7.7  0.765 6.75 2.35 4.89 

V 35.4 6.01  15.12 11.82 24.5  0.393 13.17 9.71 6.78 

              PCA-

ANN 

T 25.0 1.41  16.03 15.61 2.7  0.572 10.03 4.02 6.69 

V 37.4 8.26  11.52 16.96 -38.3  0.132 10.09 5.21 2.75 

              

Ni 

PLSR 
T 53.4 5.45  30.61 30.61 -3.9 10-6  0.386 20.49 4.48 8.86 

V 25.2 2.51  21.54 32.26 -39.9  0.549 19.23 5.32 6.13 

              
ANN 

T 38.9 22.21  33.60 34.60 -2.9  0.460 20.92 3.78 8.54 
V 28.2 2.51  21.54 36.09 -50.5  0.455 22.71 6.63 4.10 

              PCA-
ANN 

T 26.9 9.01  30.81 28.36 8.3  0.677 17.43 3.48 3.09 
V 42.5 20.85  25.95 20.94 21.4  0.304 22.50 9.32 5.53 

              

Cd 

PLSR 
T 48.5 0.46  3.06 3.06 -3.8 10-13  0.644 3.30 1.16 4.32 

V 46.2 0.59  2.09 3.56 -51.8  0.338 2.74 1.01 3.26 

              
ANN 

T 59.7 0.19  3.40 2.47 31.5  0.641 3.74 1.67 7.03 

V 36.7 0.26  2.09 2.07 1.2  0.521 1.94 8.70 4.30 

              PCA-

ANN 

T 67.5 7.02  3.21 3.56 -10.3  0.518 4.10 1.47 8.42 

V 34.3 0.40  1.83 3.32 -57.7  0.579 2.48 1.01 2.74 
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