15 research outputs found

    Effects of monoculture and polyculture farming in oil palm smallholdings on terrestrial arthropod diversity

    Get PDF
    Oil palm agriculture has become one of the economic mainstays for biodiversity-rich countries in the tropics. The conversion of native forests to oil palm monoculture plantation has caused unprecedented biodiversity loss in Southeast Asia. Little is known about the effects of oil palm polyculture farming on arthropod diversity. In this study, arthropods were sampled using pitfall traps at 120 sites in Peninsular Malaysia. We examined how arthropod biodiversity responded to different oil palm farming practices and local-scale vegetation structure characteristics. We found that the number of arthropod orders was significantly greater in polyculture than monoculture smallholdings. However, we did not detect a significant difference in arthropod order composition nor abundance between monoculture and polyculture practices. In situ habitat characteristics explained 16% of the variation in arthropod order richness, with key predictor variables including farming practice, height of oil palm stands, and number of immature palm. The findings of this study suggest that polyculture farming together with management for in situ habitat complexity may be a useful strategy in supporting biodiversity within in oil palm plantations

    Co-producing a Research Agenda for Sustainable Palm Oil

    Get PDF
    The rise of palm oil as the world’s most consumed vegetable oil has coincided with exponential growth in palm oil research activity. Bibliometric analysis of research outputs reveals a distinct imbalance in the type of research being undertaken, notably a disproportionate focus on biofuel and engineering topics. Recognizing the expansion of oil palm agriculture across the tropics and the increasing awareness of environmental, social, and economic impacts, we seek to reorientate the existing research agenda toward one that addresses the most fundamental and urgent questions defined by the palm oil stakeholder community. Following consultation with 659 stakeholders from 38 countries, including palm oil growers, government agencies, non-governmental organizations, and researchers, the highest priority research questions were identified within 13 themes. The resulting 279 questions, including 26 ranked as top priority, reveal a diversity of environmental and social research challenges facing the industry, ranging from the ecological and ecosystem impacts of production, to the livelihoods of plantation workers and smallholder communities. Analysis of the knowledge type produced from these questions underscores a clear need for fundamental science programmes, and studies that involve the consultation of non-academic stakeholders to develop “transformative” solutions to the oil palm sector. Stakeholders were most aligned in their choice of priority questions across the themes of policy and certification related themes, and differed the most in environmental feedback, technology and smallholder related themes. Our recommendations include improved regional academic leadership and coordination, greater engagement with private and public stakeholders in Africa, and Central and South America, and enhanced collaborative efforts with researchers in the major consuming countries of India and China.The online survey and focus groups were funded by the Geran Kursi Endowmen MPOB-UKM Malaysia, and the Royal Geographical Society UK. The residential workshop was supported from by British Council and Academy Science Malaysia via the UK Newton Ungku-Omar Fund. ZD, JB, and MS are supported by the UK Natural Environment Research Council (NE/K016407/1; http://lombok.nerc-hmtf.info/)

    The environmental impacts of palm oil in context

    Get PDF
    Delivering the Sustainable Development Goals (SDGs) requires balancing demands on land between agriculture (SDG 2) and biodiversity (SDG 15). The production of vegetable oils, and in particular palm oil, illustrates these competing demands and trade-offs. Palm oil accounts for 40% of the current global annual demand for vegetable oil as food, animal feed, and fuel (210 million tons (Mt)), but planted oil palm covers less than 5-5.5% of total global oil crop area (ca. 425 Mha), due to oil palm’s relatively high yields5. Recent oil palm expansion in forested regions of Borneo, Sumatra, and the Malay Peninsula, where >90% of global palm oil is produced, has led to substantial concern around oil palm’s role in deforestation. Oil palm expansion’s direct contribution to regional tropical deforestation varies widely, ranging from 3% in West Africa to 47% in Malaysia. Oil palm is also implicated in peatland draining and burning in Southeast Asia. Documented negative environmental impacts from such expansion include biodiversity declines, greenhouse gas emissions, and air pollution. However, oil palm generally produces more oil per area than other oil crops, is often economically viable in sites unsuitable for most other crops, and generates considerable wealth for at least some actors. Global demand for vegetable oils is projected to increase by 46% by 20509. Meeting this demand through additional expansion of oil palm versus other vegetable oil crops will lead to substantial differential effects on biodiversity, food security, climate change, land degradation, and livelihoods. Our review highlights that, although substantial gaps remain in our understanding of the relationship between the environmental, socio-cultural and economic impacts of oil palm, and the scope, stringency and effectiveness of initiatives to address these, there has been little research into the impacts and trade-offs of other vegetable oil crops. 65 Greater research attention needs to be given to investigating the impacts of palm oil production 66 compared to alternatives for the trade-offs to be assessed at a global scale
    corecore