583 research outputs found

    Antimicrobial Activity of the Quinoline Derivative HT61 against Staphylococcus aureus Biofilms.

    Get PDF
    Staphylococcus aureus biofilms are a significant problem in health care settings, partly due to the presence of a nondividing, antibiotic-tolerant subpopulation. Here we evaluated treatment of S. aureus UAMS-1 biofilms with HT61, a quinoline derivative shown to be effective against nondividing Staphylococcus spp. HT61 was effective at reducing biofilm viability and was associated with increased expression of cell wall stress and division proteins, confirming its potential as a treatment for S. aureus biofilm infections

    Mobility properties of the Hermes transposable element in transgenic lines of Aedes aegypti

    Get PDF
    The Hermes transposable element has been used to genetically transform a wide range of insect species, including the mosquito, Aedes aegypti, a vector of several important human pathogens. Hermes integrations into the mosquito germline are characterized by the non-canonical integration of the transposon and flanking plasmid and, once integrated, Hermes is stable in the presence of its transposase. In an effort to improve the post-integration mobility of Hermes in the germline of Ae. aegypti, a transgenic helper Mos1 construct expressing Hermes transposase under the control of a testis-specific promoter was crossed to a separate transgenic strain containing a target Hermes transposon. In less than 1% of the approximately 1,500 progeny from jumpstarter lines analyzed, evidence of putative Hermes germline remobilizations were detected. These recovered transposition events occur through an aberrant mechanism and provide insight into the non-canonical cut-and-paste transposition of Hermes in the germ line of Ae. aegypti

    The two homologous chaperonin 60 proteins of Mycobacterium tuberculosis have distinct effects on monocyte differentiation into osteoclasts.

    Get PDF
    Mycobacterium tuberculosis produces two homologous chaperonin (Cpn)60 proteins, Cpn60.1 and Cpn60.2 (Hsp65). Both proteins stimulate human and murine monocyte cytokine synthesis but, unlike Cpn60 proteins from other microbial species, fail to stimulate the breakdown of cultured murine bone. Here, we have examined the mechanism of action of these proteins on bone remodelling and osteoclastogenesis, induced in vitro in murine calvarial explants and the murine monocyte cell line RAW264.7. Additionally, we have determined their effect on bone remodelling in vivo in an animal model of arthritis. Recombinant Cpn60.1 but not Cpn60.2 inhibited bone breakdown both in vitro, in murine calvaria and in vivo, in experimental arthritis. Analysis of the mechanism of action of Cpn60.1 suggests that this protein works by directly blocking the synthesis of the key osteoclast transcription factor, nuclear factor of activated T cells c1. The detection of circulating immunoreactive intact Cpn60.1 in a small number of patients with tuberculosis but not in healthy controls further suggests that the skeleton may be affected in patients with tuberculosis. Taken together, these findings reveal that M. tuberculosis Cpn60.1 is a potent and novel inhibitor of osteoclastogenesis both in vitro and in vivo and a potential cure for bone-resorptive diseases like osteoporosis

    Metabolic Biomarkers for Monitoring in Situ Anaerobic Hydrocarbon Degradation

    Get PDF
    During the past 15 years researchers have made great strides in understanding the metabolism of hydrocarbons by anaerobic bacteria. Organisms capable of utilizing benzene, toluene, ethylbenzene, xylenes, alkanes, and polycyclic aromatic hydrocarbons have been isolated and described. In addition, the mechanisms of degradation for these compounds have been elucidated. This basic research has led to the development of methods for detecting in situ biodegradation of petroleum-related pollutants in anoxic groundwater. Knowledge of the metabolic pathways used by anaerobic bacteria to break down hydrocarbons has allowed us to identify unique intermediate compounds that can be used as biomarkers for in situ activity. One of these unique intermediates is 2-methylbenzylsuccinate, the product of fumarate addition to o-xylene by the enzyme responsible for toluene utilization. We have carried out laboratory studies to show that this compound can be used as a reliable indicator of anaerobic toluene degradation. Field studies confirmed that the biomarker is detectable in field samples and its distribution corresponds to areas where active biodegradation is predicted. For naphthalene, three biomarkers were identified [2-naphthoic acid (2-NA), tetrahydro-2-NA, and hexahydro-2-NA] that can be used in the field to identify areas of active in situ degradation

    First shark from the late Devonian (Frasnian) gogo formation, Western Australia sheds new light on the development of tessellated calcified cartilage

    Get PDF
    Background: Living gnathostomes (jawed vertebrates) comprise two divisions, Chondrichthyes (cartilaginous fishes, including euchondrichthyans with prismatic calcified cartilage, and extinct stem chondrichthyans) and Osteichthyes (bony fishes including tetrapods). Most of the early chondrichthyan (‘shark’) record is based upon isolated teeth, spines, and scales, with the oldest articulated sharks that exhibit major diagnostic characters of the group—prismatic calcified cartilage and pelvic claspers in males—being from the latest Devonian, c. 360 Mya. This paucity of information about early chondrichthyan anatomy is mainly due to their lack of endoskeletal bone and consequent low preservation potential. Methodology/Principal Findings: Here we present new data from the first well-preserved chondrichthyan fossil from the early Late Devonian (ca. 380–384 Mya) Gogo Formation Lägerstatte of Western Australia. The specimen is the first Devonian shark body fossil to be acid-prepared, revealing the endoskeletal elements as three-dimensional undistorted units: Meckel’s cartilages, nasal, ceratohyal, basibranchial and possible epibranchial cartilages, plus left and right scapulocoracoids, as well as teeth and scales. This unique specimen is assigned to Gogoselachus lynnbeazleyae n. gen. n. sp.Conclusions/Significance: The Meckel’s cartilages show a jaw articulation surface dominated by an expansive cotylus, and a small mandibular knob, an unusual condition for chondrichthyans. The scapulocoracoid of the new specimen shows evidence of two pectoral fin basal articulation facets, differing from the standard condition for early gnathostomes which have either one or three articulations. The tooth structure is intermediate between the ‘primitive’ ctenacanthiform and symmoriiform condition, and more derived forms with a euselachian-type base. Of special interest is the highly distinctive type of calcified cartilage forming the endoskeleton, comprising multiple layers of nonprismatic subpolygonal tesserae separated by a cellular matrix, interpreted as a transitional step toward the tessellated prismatic calcified cartilage that is recognized as the main diagnostic character of the chondrichthyans

    Expression of CXCL10 is associated with response to radiotherapy and overall survival in squamous cell carcinoma of the tongue

    Get PDF
    Five-year survival for patients with oral cancer has been disappointingly stable during the last decades, creating a demand for new biomarkers and treatment targets. Lately, much focus has been set on immunomodulation as a possible treatment or an adjuvant increasing sensitivity to conventional treatments. The objective of this study was to evaluate the prognostic importance of response to radiotherapy in tongue carcinoma patients as well as the expression of the CXC-chemokines in correlation to radiation response in the same group of tumours. Thirty-eight patients with tongue carcinoma that had received radiotherapy followed by surgery were included. The prognostic impact of pathological response to radiotherapy, N-status, T-stage, age and gender was evaluated using Cox's regression models, Kaplan-Meier survival curves and chi-square test. The expression of 23 CXC-chemokine ligands and their receptors were evaluated in all patients using microarray and qPCR and correlated with response to treatment using logistic regression. Pathological response to radiotherapy was independently associated to overall survival with a 2-year survival probability of 81 % for patients showing a complete pathological response, while patients with a non-complete response only had a probability of 42 % to survive for 2 years (p = 0.016). The expression of one CXC-chemokine, CXCL10, was significantly associated with response to radiotherapy and the group of patients with the highest CXCL10 expression responded, especially poorly (p = 0.01). CXCL10 is a potential marker for response to radiotherapy and overall survival in patients with squamous cell carcinoma of the tongue

    AXIOM: advanced X-ray imaging of the magnetosphere

    Get PDF
    Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth’s magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth’s magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth’s magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose ‘AXIOM: Advanced X-ray Imaging of the Magnetosphere’, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth–Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission

    AXIOM: Advanced X-Ray Imaging Of the Magnetosheath

    Get PDF
    AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath. magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space

    Simple rules can guide whether land or ocean based conservation will best benefit marine ecosystems

    Get PDF
    Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment run-off and a downstream coastal marine ecosystem, and contrast the cost-effectiveness of marine and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to one of four alternative conservation actions – protection on land, protection in the ocean, restoration on land, or restoration in the ocean – to maximise the extent of light-dependent marine benthic habitats, across decadal time-scales. We apply the model to a case study seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal time-scales in this system, based on a conservative estimate of the rate at which seagrass can expand into new habitat. The optimal decision will vary in different social-ecological contexts, but some basic information can guide optimal investments to counteract land and ocean based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high, or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is >1.4, with terrestrial restoration typically the most cost effective; and (4) land protection should be prioritised if the catchment is relatively intact, but the rate of vegetation decline is high. These rules-of-thumb illustrate how cost-effective conservation outcomes for connected land-ocean systems can proceed without complex modelling
    corecore