322 research outputs found

    Evaluation of atlas-based segmentation of hippocampi in healthy humans

    Get PDF
    Introduction and aim: Region of interest (ROI)-based functional magnetic resonance imaging (fMRI) data analysis relies on extracting signals from a specific area which is presumed to be involved in the brain activity being studied. The hippocampus is of interest in many functional connectivity studies for example in epilepsy as it plays an important role in epileptogenesis. In this context, ROI may be defined using different techniques. Our study aims at evaluating the spatial correspondence of hippocampal ROIs obtained using three brain atlases with hippocampal ROI obtained using an automatic segmentation algorithm dedicated to the hippocampus. Material and methods: High-resolution volumetric T1-weighted MR images of 18 healthy volunteers (five females) were acquired on a 3T scanner. Individual ROIs for both hippocampi of each subject were segmented from the MR images using an automatic hippocampus and amygdala segmentation software called SACHA providing the gold standard ROI for comparison with the atlas-derived results. For each subject, hippocampal ROIs were also obtained using three brain atlases: PickAtlas available as a commonly used software toolbox; automated anatomical labeling (AAL) atlas included as a subset of ROI into PickAtlas toolbox and a frequency-based brain atlas by Hammers et al. The levels of agreement between the SACHA results and those obtained using the atlases were assessed based on quantitative indices measuring volume differences and spatial overlap. The comparison was performed in standard Montreal Neurological Institute space, the registration being obtained with SPM5 (http://www.fil.ion.ucl.ac.uk/spm/). Results: The mean volumetric error across all subjects was 73% for hippocampal ROIs derived from AAL atlas; 20% in case of ROIs derived from the Hammers atlas and 107% for ROIs derived from PickAtlas. The mean false-positive and false-negative classification rates were 60% and 10% respectively for the AAL atlas; 16% and 32% for the Hammers atlas and 6% and 72% for the PickAtlas. Conclusion: Though atlas-based ROI definition may be convenient, the resulting ROIs may be poor representations of the hippocampus in some studies critical to under- or oversampling. Performance of the AAL atlas was inferior to that of the Hammers atlas. Hippocampal ROIs derived from PickAtlas are highly significantly smaller, and this results in the worst performance out of three atlases. It is advisable that the defined ROIs should be verified with knowledge of neuroanatomy before using it for further data analysis

    Progress in Atomic Fountains at LNE-SYRTE

    Full text link
    We give an overview of the work done with the Laboratoire National de M\'etrologie et d'Essais-Syst\`emes de R\'ef\'erence Temps-Espace (LNE-SYRTE) fountain ensemble during the last five years. After a description of the clock ensemble, comprising three fountains, FO1, FO2, and FOM, and the newest developments, we review recent studies of several systematic frequency shifts. This includes the distributed cavity phase shift, which we evaluate for the FO1 and FOM fountains, applying the techniques of our recent work on FO2. We also report calculations of the microwave lensing frequency shift for the three fountains, review the status of the blackbody radiation shift, and summarize recent experimental work to control microwave leakage and spurious phase perturbations. We give current accuracy budgets. We also describe several applications in time and frequency metrology: fountain comparisons, calibrations of the international atomic time, secondary representation of the SI second based on the 87Rb hyperfine frequency, absolute measurements of optical frequencies, tests of the T2L2 satellite laser link, and review fundamental physics applications of the LNE-SYRTE fountain ensemble. Finally, we give a summary of the tests of the PHARAO cold atom space clock performed using the FOM transportable fountain.Comment: 19 pages, 12 figures, 5 tables, 126 reference

    Atomic fountains and optical clocks at SYRTE: status and perspectives

    Get PDF
    In this article, we report on the work done with the LNE-SYRTE atomic clock ensemble during the last 10 years. We cover progress made in atomic fountains and in their application to timekeeping. We also cover the development of optical lattice clocks based on strontium and on mercury. We report on tests of fundamental physical laws made with these highly accurate atomic clocks. We also report on work relevant to a future possible redefinition of the SI second

    Competitive segmentation of the hippocampus and the amygdala from MRI scans

    Get PDF
    The hippocampus and the amygdala are two brain structures which play a central role in several fundamental cognitive processes. Their segmentation from Magnetic Resonance Imaging (MRI) scans is a unique way to measure their atrophy in some neurological diseases, but it is made difficult by their complex geometry. Their simultaneous segmentation is considered here through a competitive homotopic region growing method. It is driven by relational anatomical knowledge, which enables to consider the segmentation of atrophic structures in a straightforward way. For both structures, this fast algorithm gives results which are comparable to manual segmentation with a better reproducibility. Its performances regarding segmentation quality, automation and computation time, are amongst the best published data.L’hippocampe et l’amygdale sont deux structures cérébrales intervenant dans plusieurs fonctions cognitives fondamentales. Leur segmentation, à partir de volumes d’imagerie par résonance magnétique (IRM), est un outil essentiel pour mesurer leur atteinte dans certaines pathologies neurologiques, mais elle est rendue difficile par leur géométrie complexe. Nous considérons leur segmentation simultanée par une méthode de déformation homotopique compétitive de régions. Celle-ci est guidée par des connaissances anatomiques relationnelles ; ceci permet de considérer directement des structures atrophiées. Rapide, l’algorithme donne, pour les deux structures, des résultats comparables à la segmentation manuelle avec une meilleure reproductibilité. Ses performances, concernant la qualité de la segmentation, le degré d’automatisation et le temps de calcul, sont parmi les meilleures de la littérature

    Drug related problems and pharmacist interventions in a geriatric unit employing electronic prescribing

    Get PDF
    Background Computerised physician order entry (CPOE) and the integration of a pharmacist in clinical wards have been shown to prevent drug related problems (DRPs). Objectives The primary objective was to make an inventory of the DRPs and resident pharmacist on-ward interventions (PIs) identified in a geriatric acute care unit using CPOE system. The secondary objective was to evaluate the physicians\u27 acceptance of the proposed interventions. Setting A 26-bed geriatric ward of a 1,300-bed teaching hospital. Method A 6-month descriptive study with prescription analysis and recommendations to physicians by a resident pharmacist during five half days a week. Main outcome measures Patients\u27 characteristics, number of prescribed drugs per patient, nature and frequency of DRPs and PIs, physicians\u27 acceptance and drugs questioned. Results Resident pharmacist reviewed 311 patients and identified 241 DRPs. One hundred and fifty-two patients (49 %) had at least one DRP (mean +/- A SD age 87 +/- A 6 years, mean +/- A SD number of prescribed drugs 10.7 +/- A 3.4). Most frequent DRPs were: untreated indication (n = 58, 24.1 %), dose too high (n = 46, 19.1 %), improper administration (n = 31, 12.9 %) and drug interactions (n = 23, 9.5 %). The rate of physicians\u27 acceptance was 90.0 % (7.5 % refusals, 2.5 % not assessable). DRPs related to CPOE system misuse (n = 35, 14.5 %) appeared as a worrying phenomenon (e.g., errors in selecting dosage or unit, or duplication of therapy). Conclusion A resident pharmacist detected various DRPs. Most PIs were accepted. DRPs related to the misuse of the CPOE system appeared potentially dangerous and need particular attention by healthcare professionals. The description of the DRPs is an essential step for implementation of targeted clinical pharmacy services in order to optimize pharmacists\u27 job time

    Segmentation compétitive de l'hippocampe et de l'amygdale à partir de volumes IRM

    Get PDF
    L'hippocampe et l'amygdale sont deux structures cérébrales intervenant dans plusieurs fonctions cognitives fondamentales. Leur segmentation est un outil essentiel pour mesurer leur atteinte dans certaines pathologies neurologiques, mais elle est rendue difficile par leur complexité. Nous considérons leur segmentation simultanée par une méthode de déformation homotopique compétitive de régions. celle-ci est guidée par des connaissances anatomiques relationnelles, et non des a priori statistiques, pour pouvoir considérer des structures atrophiées. Rapide, l'algorithme donne des résultats satisfaisants pour les deux structures par rapport à la segmentation manuelle et à la littérature

    Automatic ROI Selection in Structural Brain MRI Using SOM 3D Projection

    Get PDF
    This paper presents a method for selecting Regions of Interest (ROI) in brain Magnetic Resonance Imaging (MRI) for diagnostic purposes, using statistical learning and vector quantization techniques. The proposed method models the distribution of GM and WM tissues grouping the voxels belonging to each tissue in ROIs associated to a specific neurological disorder. Tissue distribution of normal and abnormal images is modelled by a Self-Organizing map (SOM), generating a set of representative prototypes, and the receptive field (RF) of each SOM prototype defines a ROI. Moreover, the proposed method computes the relative importance of each ROI by means of its discriminative power. The devised method has been assessed using 818 images from the Alzheimer's disease Neuroimaging Initiative (ADNI) which were previously segmented through Statistical Parametric Mapping (SPM). The proposed algorithm was used over these images to parcel ROIs associated to the Alzheimer's Disease (AD). Additionally, this method can be used to extract a reduced set of discriminative features for classification, since it compresses discriminative information contained in the brain. Voxels marked by ROIs which were computed using the proposed method, yield classification results up to 90% of accuracy for controls (CN) and Alzheimer's disease (AD) patients, and 84% of accuracy for Mild Cognitive Impairment (MCI) and AD patients.This work was partly supported by the MICINN under the TEC2012-34306 project and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) under the Excellence Projects P09-TIC-4530 and P11-TIC-7103. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer's Association; Alzheimer's Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRxResearch; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California

    Creation of a Large Volume Cryochamber for Studying Radio Level Gauges

    Full text link
    This article describes the creation of electronics and a control system for a large volume cryochamber in order to study the properties of radio level gauges at operating temperature.This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program.Работа выполнена за счет средств Программы стратегического академического лидерства Казанского (Приволжского) федерального университета

    Warburg-like effect is a hallmark of complex I assembly defects

    Get PDF
    Due to its pivotal role in NADH oxidation and ATP synthesis, mitochondrial complex I (CI) emerged as a crucial regulator of cellular metabolism. A functional CI relies on the sequential assembly of nuclear- and mtDNA-encoded subunits; however, whether CI assembly status is involved in the metabolic adaptations in CI deficiency still remains largely unknown. Here, we investigated the relationship between CI functions, its structure and the cellular metabolism in 29 patient fibroblasts representative of most CI mitochondrial diseases. Our results show that, contrary to the generally accepted view, a complex I deficiency does not necessarily lead to a glycolytic switch, i.e. the so-called Warburg effect, but that this particular metabolic adaptation is a feature of CI assembly defect. By contrast, a CI functional defect without disassembly induces a higher catabolism to sustain the oxidative metabolism. Mechanistically, we demonstrate that reactive oxygen species overproduction by CI assembly intermediates and subsequent AMPK-dependent Pyruvate Dehydrogenase inactivation are key players of this metabolic reprogramming. Thus, this study provides a two-way-model of metabolic responses to CI deficiencies that are central not only in defining therapeutic strategies for mitochondrial diseases, but also in all pathophysiological conditions involving a CI deficiency
    corecore