424 research outputs found

    Vitamin D: beyond bone.

    Get PDF
    In recent years, vitamin D has been received increased attention due to the resurgence of vitamin D deficiency and rickets in developed countries and the identification of extraskeletal effects of vitamin D, suggesting unexpected benefits of vitamin D in health and disease, beyond bone health. The possibility of extraskeletal effects of vitamin D was first noted with the discovery of the vitamin D receptor (VDR) in tissues and cells that are not involved in maintaining mineral homeostasis and bone health, including skin, placenta, pancreas, breast, prostate and colon cancer cells, and activated T cells. However, the biological significance of the expression of the VDR in different tissues is not fully understood, and the role of vitamin D in extraskeletal health has been a matter of debate. This report summarizes recent research on the roles for vitamin D in cancer, immunity and autoimmune diseases, cardiovascular and respiratory health, pregnancy, obesity, erythropoiesis, diabetes, muscle function, and aging

    Area Disease Estimation Based on Sentinel Hospital Records

    Get PDF
    BACKGROUND: Population health attributes (such as disease incidence and prevalence) are often estimated using sentinel hospital records, which are subject to multiple sources of uncertainty. When applied to these health attributes, commonly used biased estimation techniques can lead to false conclusions and ineffective disease intervention and control. Although some estimators can account for measurement error (in the form of white noise, usually after de-trending), most mainstream health statistics techniques cannot generate unbiased and minimum error variance estimates when the available data are biased. METHODS AND FINDINGS: A new technique, called the Biased Sample Hospital-based Area Disease Estimation (B-SHADE), is introduced that generates space-time population disease estimates using biased hospital records. The effectiveness of the technique is empirically evaluated in terms of hospital records of disease incidence (for hand-foot-mouth disease and fever syndrome cases) in Shanghai (China) during a two-year period. The B-SHADE technique uses a weighted summation of sentinel hospital records to derive unbiased and minimum error variance estimates of area incidence. The calculation of these weights is the outcome of a process that combines: the available space-time information; a rigorous assessment of both, the horizontal relationships between hospital records and the vertical links between each hospital's records and the overall disease situation in the region. In this way, the representativeness of the sentinel hospital records was improved, the possible biases of these records were corrected, and the generated area incidence estimates were best linear unbiased estimates (BLUE). Using the same hospital records, the performance of the B-SHADE technique was compared against two mainstream estimators. CONCLUSIONS: The B-SHADE technique involves a hospital network-based model that blends the optimal estimation features of the Block Kriging method and the sample bias correction efficiency of the ratio estimator method. In this way, B-SHADE can overcome the limitations of both methods: Block Kriging's inadequacy concerning the correction of sample bias and spatial clustering; and the ratio estimator's limitation as regards error minimization. The generality of the B-SHADE technique is further demonstrated by the fact that it reduces to Block Kriging in the case of unbiased samples; to ratio estimator if there is no correlation between hospitals; and to simple statistic if the hospital records are neither biased nor space-time correlated. In addition to the theoretical advantages of the B-SHADE technique over the two other methods above, two real world case studies (hand-foot-mouth disease and fever syndrome cases) demonstrated its empirical superiority, as well

    Spatiotemporal Infectious Disease Modeling: A BME-SIR Approach

    Get PDF
    This paper is concerned with the modeling of infectious disease spread in a composite space-time domain under conditions of uncertainty. We focus on stochastic modeling that accounts for basic mechanisms of disease distribution and multi-sourced in situ uncertainties. Starting from the general formulation of population migration dynamics and the specification of transmission and recovery rates, the model studies the functional formulation of the evolution of the fractions of susceptible-infected-recovered individuals. The suggested approach is capable of: a) modeling population dynamics within and across localities, b) integrating the disease representation (i.e. susceptible-infected-recovered individuals) with observation time series at different geographical locations and other sources of information (e.g. hard and soft data, empirical relationships, secondary information), and c) generating predictions of disease spread and associated parameters in real time, while considering model and observation uncertainties. Key aspects of the proposed approach are illustrated by means of simulations (i.e. synthetic studies), and a real-world application using hand-foot-mouth disease (HFMD) data from China.J.M. Angulo and A.E. Madrid have been partially supported by grants MTM2009-13250 and MTM2012-32666 of SGPI, and P08-FQM-3834 of the Andalusian CICE, Spain. H-L Yu has been partially supported by a grant from National Science Council of Taiwan (NSC101-2628-E-002-017-MY3 and NSC102-2221-E-002-140-MY3). A. Kolovos was supported by SpaceTimeWorks, LLC. G. Christakos was supported by a Yongqian Chair Professorship (Zhejiang University, China)

    On the Schoenberg Transformations in Data Analysis: Theory and Illustrations

    Get PDF
    The class of Schoenberg transformations, embedding Euclidean distances into higher dimensional Euclidean spaces, is presented, and derived from theorems on positive definite and conditionally negative definite matrices. Original results on the arc lengths, angles and curvature of the transformations are proposed, and visualized on artificial data sets by classical multidimensional scaling. A simple distance-based discriminant algorithm illustrates the theory, intimately connected to the Gaussian kernels of Machine Learning

    Hierarchical space-time modeling of asymptotically independent exceedances with an application to precipitation data

    Get PDF
    <p>The statistical modeling of space-time extremes in environmental applications is key to understanding complex dependence structures in original event data and to generating realistic scenarios for impact models. In this context of high-dimensional data, we propose a novel hierarchical model for high threshold exceedances defined over continuous space and time by embedding a space-time Gamma process convolution for the rate of an exponential variable, leading to asymptotic independence in space and time. Its physically motivated anisotropic dependence structure is based on geometric objects moving through space-time according to a velocity vector. We demonstrate that inference based on weighted pairwise likelihood is fast and accurate. The usefulness of our model is illustrated by an application to hourly precipitation data from a study region in Southern France, where it clearly improves on an alternative censored Gaussian space-time random field model. While classical limit models based on threshold-stability fail to appropriately capture relatively fast joint tail decay rates between asymptotic dependence and classical independence, strong empirical evidence from our application and other recent case studies motivates the use of more realistic asymptotic independence models such as ours.</p

    Coupling models of cattle and farms with models of badgers for predicting the dynamics of bovine tuberculosis (TB)

    Get PDF
    Bovine TB is a major problem for the agricultural industry in several countries. TB can be contracted and spread by species other than cattle and this can cause a problem for disease control. In the UK and Ireland, badgers are a recognised reservoir of infection and there has been substantial discussion about potential control strategies. We present a coupling of individual based models of bovine TB in badgers and cattle, which aims to capture the key details of the natural history of the disease and of both species at approximately county scale. The model is spatially explicit it follows a very large number of cattle and badgers on a different grid size for each species and includes also winter housing. We show that the model can replicate the reported dynamics of both cattle and badger populations as well as the increasing prevalence of the disease in cattle. Parameter space used as input in simulations was swept out using Latin hypercube sampling and sensitivity analysis to model outputs was conducted using mixed effect models. By exploring a large and computationally intensive parameter space we show that of the available control strategies it is the frequency of TB testing and whether or not winter housing is practised that have the most significant effects on the number of infected cattle, with the effect of winter housing becoming stronger as farm size increases. Whether badgers were culled or not explained about 5%, while the accuracy of the test employed to detect infected cattle explained less than 3% of the variance in the number of infected cattle

    Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data

    Get PDF
    This study was supported by the NSF China Programs (Grant No. 31300539 and 31570629) and the Public Welfare Technology Application Research Program of Zhejiang province (Grant No. 2015C31004).Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.Yeshttp://www.plosone.org/static/editorial#pee
    corecore