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Abstract: The class of Schoenberg transformations, embedding Euclidean distances
into higher dimensional Euclidean spaces, is presented, and derived from theorems
on positive definite and conditionally negative definite matrices. Original results on
the arc lengths, angles and curvature of the transformations are proposed, and visu-
alized on artificial data sets by classical multidimensional scaling. A distance-based
discriminant algorithm and a robust multidimensional centroid estimate illustrate the
theory, closely connected to the Gaussian kernels of Machine Learning.
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1. Introduction

Schoenberg transformations are elementwise mappings of Euclidean
distances into new Euclidean distances, embeddable in a higher dimensional
space. Their potential in Data Analysis seems evident in view of the om-
nipresence of Euclidean dissimilarities in Multidimensional Scaling (MDS),
Factor Analysis, Correspondence Analysis or Clustering. Yet, despite its re-
spectable age (Schoenberg 1938a), the properties and the very existence of
this class of transformations appear to be little known in the Data Analytic
community.
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F. Bavaud

By contrast, non-linear embeddings of original data into higher di-
mensional feature spaces are familiar in the Machine Learning community,
which however bases its formalism upon kernels, which are positive definite
(p.d.) matrices, rather than on squared Euclidean distances, which are con-
ditionally negative definite (c.n.d.) matrices with a null diagonal (Section
3.1).

Some aspects of the correspondence between p.d. and c.n.d. matri-
ces are well-known in Data Analysis, and lie at the core of classical MDS
(Theorems 1 and 2). Other aspects (Theorem 4), central to the derivation
of Schoenberg transformations (Definition 2), are less well-known. Section
2 is a self-contained review of all those results, scattered in the literature,
together with their proofs. Section 3 analyzes some of the general proper-
ties of Schoenberg transformations, and yields original results about angles,
arc lengths and curvatures. Section 4 illustrates the non-linear and spectral
properties of the transformations on two artificial data sets – the grid and the
rod. Section 5 briefly illustrates data-analytic applications, namely distance-
based discriminant analysis and robust centroid estimation. In conclusion,
Section 6 proposes to revisit the Machine Learning formalism in terms of
Euclidean distances, rather than in terms of kernels.

2. Definitions and Theorems

2.1 Preliminaries

Classical multidimensional scaling (MDS) (e.g. Borg and Groenen
1997) can be performed iff the eigenvalues of the so-called matrix of scalar
products are non-negative. For concision, we shall refer to such a matrix as
positive definite – instead of “positive semi-definite”.

Vectors are column vectors. I denotes the identity matrix, and 1 the
unit vector, whose components are all unity. Depending upon context, the
“prime” either denotes the transpose of a matrix, or the derivative of a scalar
function.

Definition 1. A real symmetric n× n matrix C = (cij) is said to be

• positive definite (p.d.) if z′Cz =
∑n

ij cijzizj ≥ 0 for all vectors
z ∈ Rn

• conditionally negative definite (c.n.d) if z′Cz =
∑n

ij cijzizj ≤ 0 for
all z ∈ Rn such that

∑n
i=1 zi = 0.

Consider a signed distribution a on n objects, that is a vector obeying∑n
i=1 ai = 1, where some components are possibly negative. Consider also

the n× n centering matrix H(a) = I − 1a′, with components δij − aj . Let
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C be a symmetric n× n matrix, and define the matrix B(a) = (Bij(a)) as

B(a) = −1

2
H(a) C H ′(a) . (1)

Theorem 1 (Young and Houseolder 1938; Schoenberg 1938b).
For any signed distribution a,

B(a) is p.d. ⇔ C is c.n.d.

Proof: First observe that if B(a) is p.d., then B(ã) is also p.d. for any other
signed distribution ã, in view of the identity B(ã) = H(ã)B(a)H ′(ã), itself
a consequence of H(ã) = H(ã)H(a). Also, for any z, z′B(a)z = −1

2y
′Cy

where the vector y = H ′(a)z obeys
∑

i yi = 0 for any z, showing “⇐”.
Finally, y = H ′(a)y whenever

∑
i yi = 0, and hence y′B(a)y = −1

2y
′Cy,

thus demonstrating “⇒”.
!
Theorem 2 (Classical MDS). Let C = (cij) be a symmetric n × n matrix.
Define the associated null-diagonal matrix Ĉ = (ĉij) as ĉij = cij − 1

2cii −
1
2cjj . Then

B(a) = −1

2
H(a) Ĉ H ′(a) and ĉij = Bii(a) +Bjj(a)− 2Bij(a) .

(2)
Moreover,C is c.n.d. iff Ĉ is c.n.d. In this case, the components ĉij are “iso-
metrically embeddable in l2”, that is representable as squared Euclidean
distances Dij between n objects as

Dij ≡ ĉij =
p∑

α=1

(xiα − xjα)
2, i, j = 1, . . . , n (3)

where the object coordinates can be chosen as

xiα =
√

λα(a) uiα(a), (4)

where the λα are the diagonal components of the diagonal matrix Λ(a) and
uiα(a) are the components of the orthogonal matrix U(a) occurring in the
spectral decomposition B(a) = U(a)Λ(a)U ′(a).

Proof: The first identity in (2) follows from H(a)1 = 0, and the second one
from Bii(a) +Bjj(a) − 2Bij(a) = cij − 1

2cii −
1
2cjj , itself a consequence

of the form (1) Bij(a) = −1
2cij + γi + γj for some vector γ. The next

assertion follows from y′Cy = y′Ĉy whenever
∑

i yi = 0, and identity (3)
can be shown to amount to the second identity (2) by direct substitution.
!
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On one hand, the p.d. nature of B(a) (Theorem 1) makes its eigen-
values λα non-negative. One the other hand, H ′(a)a = 0 yields B(a)a = 0.
Hence, at least one eigenvalue is zero and p ≤ n− 1 in (3).

Theorems 1 and 2 show that any p.d. matrix B, or equivalently any
c.n.d. matrix C , define a unique set of squared Euclidean distances D be-
tween objects (Torgerson 1958; Rao 1964; Gower 1966). The latter can be
shown (e.g. from (4)) to obey the celebrated Huygens principle, namely (e.g.
Benzécri 1973)

n∑

j=1

ajDij = Dia + ∆a ∆a =
1

2

n∑

i,j=1

aiajDij , (5)

where Dia denotes the squared distance between object i (with coordinates
xi) and the a-barycenter defined by the coordinates x̄a =

∑
j ajxj . Also,

∆a ≥ 0 interprets as the average dispersion of the cloud, provided a is a
non-negative distribution representing the relative weights of the objects. In
the general case of a signed distribution, ∆a is still well defined, but can be
negative.

The squared Euclidean distance between the barycenters x̄a and x̄b
associated to two signed distributions a and b can also be shown to satisfy

Dab = −1

2

∑

ij

(ai − bi)(aj − bj)Dij , (6)

which directly demonstrates the c.n.d. nature of D (since zi = ai− bi obeys∑
i zi = 0). Also, (6) entails (5) with the choice bj = δjk for some k.

Substituting (5) in (1) yields

Bij(a) = −1

2
(Dij −Dia −Dja) ,

which, by the cosine theorem, is the matrix of the scalar products between
xi and xj as measured from the origin x̄a. Low-dimensional factorial recon-
structions (that is limiting the sum in (3) to the largest eigenvalues) express
a maximum amount of tr(B(a)) =

∑
iDia. This quantity, without direct

interpretation, is proportional to the uniform dispersion of the coordinates
cloud with respect to the point x̄a. Also, tr(B(a)) is minimum when a is the
uniform distribution, a standard choice in classical MDS (e.g. Mardia, Kent,
and Bibby 1979).

Concentrating the mass of a on a single existing object, typically the
last one, is often proposed for computational convenience. Other prescrip-
tions consider ai as proportional to the precision of measurement of object
i (e.g. Borg and Groenen 1997), or set ai = 0 for objects whose behavior
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might influence excessively the overall configuration, as in the treatment of
“supplementary elements” in Correspondence Analysis (e.g. Benzécri 1973;
Lebart, Morineau and Piron 1998; Meulman, van der Kooij and Heiser 2004;
Greenacre and Blasius 2006). Other choices such as the circumcenter or the
incenter are discussed in Gower (1982). Note that the signed nature of a
allows one to define an external origin x̄a lying outside the convex hull of
the n points, resulting in Bij(a) ≥ 0 for all pairs.

As a matter of fact, the choice of the origin a and the choice of the ob-
ject weights f constitute two distinct operations, as made explicit by the fol-
lowing generalization of classical MDS (Cuadras and Fortina 1996; Bavaud
2006, 2009):

Theorem 3 (Weighted MDS). Consider n weighted objects with positive
weights fi > 0 normalized to

∑
i fi = 1, together with a (symmetric, non-

negative, null-diagonal) pairwise dissimilarity matrix D = (Dij). Let Π =
(πij) = diag(f), i.e. πij = fiδij . Then D is squared Euclidean iff the
matrix of weighted scalar products

K(a) = −1

2

√
ΠH(a)DH ′(a)

√
Π that is Kij(a) =

√
fi fjBij(a)

is p.d. The objects coordinates can be chosen as

xiα =
√

λα(a)
fi

uiα(a) with Dij =
p∑

α=1

(xiα − xjα)
2 , (7)

where the eigenvalues λα(a) and eigenvectors uiα(a) are obtained from the
spectral decomposition of K(a) = U(a)Λ(a)U ′(a). Moreover, the corre-
sponding low-dimensional factorial reconstruction, retaining in (7) only the
components α associated with the largest eigenvalues, express a maximum
proportion of the total inertia relatively to a, namely

tr(K(a)) =
p∑

α=1

λα =
∑

i

fiDia = ∆f +Dfa . (8)

The proof follows from the definitions and Theorem 2 by direct substitution.
The last identity is a consequence of (5), and shows in particular the total
inertia to be minimum for a = f , as expected. When f is uniform, the
eigenvalues in Theorems 2 and 3 coincide up to a factor n.

2.2 The Class of Schoenberg Transformations

If A = (aij) and B = (bij) are p.d. matrices of the same order n,
so are cA for c ≥ 0, (tiaijtj) for any vector t (cf. Theorem 3), A + B,
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AB as well as the element-wise product or Hadamard product A ◦ B with
components aijbij . The latter result (Schur theorem), can be first proved
for rank-one p.d. matrices, and then extended to arbitrary ranks by matrix
addition (e.g. Horn and Johnson 1991; Bhatia 2006). Combining those
facts, one obtains that the Hadamard integral power A◦p with components
apij (where p ∈ N) or the Hadamard exponential exp(◦A) with components
exp(aij) are p.d. However, A◦λ is generally not p.d. for λ > 0, unless
λ ≥ n− 2 (Fitzgerald and Horn 1977). P.d. matrices A such that A◦λ is p.d.
for every λ ≥ 0 are called infinitely divisible.

P.d. matrices are referred to as kernels in the Machine Learning
community (e.g. Haussler 1999; Cristianini and Shawe-Taylor 2003; Hof-
mann, Schölkopf and Smola 2008; and references therein). One of the most
popular kernels is the so-called radial basis function or Gaussian kernel
exp(−λDij).

Theorem 4 (Infinitely Divisible Kernels). Let C = (cij) be a symmetric
matrix, and define B = exp(◦ − C), that is bij = exp(−cij). Then

B is infinitely divisible ⇔ C is c.n.d.

Proof: (Horn and Johnson 1991, p. 456): Consider the matrix aij(λ) =
(1 − bλij)/λ. If B is infinitely divisible, then z′A(α)z ≤ 0 for any vec-
tor z summing to zero, that is A(λ) is c.n.d. for any λ > 0. Hence
limλ→0+ aij(λ) = − ln bij is c.n.d., showing “⇒”. Conversely, suppose
C is c.n.d., and define F = −H(a)CH ′(a) where H(a) is the centering
matrix of Section 2.1. By Theorem 1, F is p.d., and so is exp(◦F ). But
exp(fij) = exp(−cij − ηi − ηj) since fij = −cij − ηi − ηj for some η.
Hence bij = exp(−cij) = exp(ηi) exp(fij) exp(ηj) is of the form tiaijtj
with A p.d, and hence p.d. By the same reasoning, bλij = exp(−λcij) is p.d.
for any λ ≥ 0, since λC is c.n.d. iff C is c.n.d., thus proving “⇐”.
!
Corollary 1 (Gaussian Kernel). Let Dij be a squared Euclidean distance.
Then, for any λ ≥ 0, exp(−λDij) is p.d., and D̃ij(λ) = 1 − exp(−λDij)
is a squared Euclidean distance.

Proof: The first assertion follows form Theorem 4, and the second from
Theorem 2 together with the fact that D̃ij(λ) can easily be shown to be
c.n.d. with a null diagonal.
!

More generally, any mixture of D̃(λ) over λ ≥ 0 is a squared Eu-
clidean distance, yielding the following definition and theorem:

Definition 2 (Schoenberg Transformations). A Schoenberg transforma-
tion is a function ϕ(D) from R+ to R+ of the form (Schoenberg 1938a)
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ϕ(D) =

∫ ∞

0

1− exp(−λD)

λ
g(λ) dλ , (9)

where g(λ) dλ is a non-negative measure on [0,∞) such that
∫∞
1

g(λ)
λ dλ <

∞.
Note that (9) entails ϕ(D) ≥ 0 and ϕ(0) = 0 together with

ϕ′(D) =

∫ ∞

0
exp(−λD) g(λ) dλ , (10)

where ϕ′(D) denotes the derivative of ϕ(D).

Theorem 5 (Fundamental Property of Schoenberg Transformations).
Let D be a n×n matrix of squared Euclidean distances. Define the compo-
nents of the n× n matrix D̃ as D̃ij = ϕ(Dij), where ϕ(D) is a Schoenberg
transformation. Then D̃ is a squared Euclidean distance.

It follows from the above that all componentwise transformations of
the form D̃ij = ϕ(Dij) transform a squared Euclidean distance into another
squared Euclidean distance. In his paper (1938a), Schoenberg indeed proved
(Theorem 6, p. 828) that all such transformations are given by Definition 2.
More precisely, Schoenberg addressed and solved the question of determin-
ing the class Φm of all the transformations D̃ = ϕ(D) of squared Euclidean
distances D, associated with any configuration in Rp, which are isometri-
cally embeddable in an Euclidean space of sufficiently large dimensionality,
that is in an Hilbert space R∞. By construction, Φ1 ⊃ Φ2 ⊃ . . . ⊃ Φ∞,
and Definition 2 characterizes the class Φ∞ = ∩p≥1Φp. The class Φ1 is
central to Brownian and fractional Brownian motion (e.g. Alpay, Attia, and
Levanony 2009), while lower-order classes Φp≤3 are fundamental in Geo-
statistics (e.g. Christakos 1984) and spatial interpolation (e.g. Micchelli
1986; Stein 1999).

3. Some Properties of the Schoenberg Transformations

3.1 Complete Monotonicity

By construction, ϕ′(D) in (10) coincides with the class of completely
monotonic functions f(D) obeying (−1)nf (n)(D) ≥ 0 (Bernstein 1929).
Hence Schoenberg transformations are characterized by ϕ(D) ≥ 0 with
ϕ(0) = 0, with positive odd derivatives ϕ′(D), ϕ′′′(D), etc., and negative
even derivatives ϕ′′(D), ϕ′′′′(D), etc. (see Table 1).

In particular, Dα with 0 < α < 1 is Euclidean when D is Euclidean
(Schoenberg 1937) – or even, for α small enough, when D is a plain dis-
similarity (Joly and Le Calvé 1986; see also Critchley and Fichet 1994 for a
review on typologies of Euclidean and non-Euclidean dissimilarities).
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Table 1. Some Schoenberg transformations.

function g(λ) transformation ϕ(D) ∗ ∗∗
g1(λ) = δ(λ− a) a ≥ 0 ϕ1(D) = 1−exp(−aD)

a " "
g2(λ) = θ(λ ≤ π

2 ) λ sinλ ϕ2(D) =
D(D+exp(−π

2 D))

1+D2 " "
g3(λ) = exp(−aλ) a > 0 ϕ3(D) = ln(1 + D

a ) − "
g4(λ) = λ exp(−aλ) a > 0 ϕ4(D) = D

a(a+D) " "
g5(λ) = a

Γ(1−a)λ
−a

0 < a < 1 ϕ5(D) = Da − −
see Berg et al. (2008) ϕ6(D) = Da

1+Da 0 < a < 1 " −

*Bounded ** Rectifiable

Also, the identity transformation ϕ(D) = D obtains from g(λ) =
δ(λ). The latter contribution can be made explicit in the following variant,
equivalent to Definition 2:

ϕ(D) = b D +

∫ ∞

0
(1− exp(−λD)) dµ(λ) ,

where µ is a non-negative measure on (0,∞) such that
∫∞
0

λ
1+λ dµ(λ) < ∞

and b ≥ 0.
There exists an important literature about Bernstein functions (see e.g.

Berg, Mateu, and Porcu 2008; Schilling, Song, and Vondraček 2010; and
references therein), defined as the smooth non-negative functions whose first
derivatives are completely monotonic. Hence, Schoenberg transformations
coincide with the class of Bernstein functions which are zero at the origin, in
the same way that Euclidean distances are c.n.d matrices with a null diagonal
(Theorem 2).

By construction, Schoenberg transformations are closed under com-
position, as exemplified by ϕ6 = ϕ4 ◦ ϕ5 in Table 1.

3.2 Arc Length; Rectifiable and Bounded Transformations

A Schoenberg transformation acts as an anamorphosis between Eu-
clidean spaces: to any initial configuration of points X, with mutual squared
Euclidean distances D(X), corresponds a distorted configuration X̃ recon-
structible by MDS from D̃ = φ(D). By construction, the mapping X̃(X) is
unique up to a translation and a rotation.

Consider a smooth curve C whose arc length is parameterized by s,
containing two close points at mutual distance ∆s. The corresponding dis-
tance on the transformed curve C̃ is ∆s̃ =

√
ϕ((∆s)2). By l’Hospital’s

rule, the ratio of the infinitesimal arc lengths is

ds̃

ds
= lim

∆s→0

√
ϕ((∆s)2)

∆s
=

√
ϕ′(0) ,
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which might be finite or not. On the other hand, infinitely distant points in
the original space might be infinitely distant or not in the transformed space:

Definition 3. The transformation ϕ(D) is said to be

• rectifiable if ϕ′(0) < ∞, that is iff
∫∞
0 g(λ) dλ < ∞

• bounded if ϕ(∞) < ∞, that is iff
∫∞
0

g(λ)
λ dλ < ∞.

3.3 Right Angles

Consider a triangle ikj with a right angle in k. Hence Dij = Dik +
Djk by Pythagoras’ theorem. Yet, in the transformed space, D̃ij ≤ D̃ik +
D̃jk since ϕ(D1 +D2) ≤ ϕ(D1) + ϕ(D2), which can be demonstrated by
integrating (1 − exp(−λD1))(1 − exp(−λD2)) ≥ 0 as in (9). That is, the
Schoenberg transformation α̃ of a right angle α = π/2 is in general acute.
By the cosine theorem,

cos α̃ =
ϕ(D1) + ϕ(D2)− ϕ(D1 +D2)

2
√

ϕ(D1)ϕ(D2)
≥ 0 . (11)

Under uniform linear dilatation of the original right-angled triangle by a
factor ε > 0, (11) readily yields that limε→∞ α̃(ε) = π/3 whenever ϕ is
bounded, and limε→0 α̃(ε) = π/2 whenever ϕ is rectifiable.

3.4 Curvature

Straight lines are bent by Schoenberg transformations: think of a rod
whose linear distances d between constituents are contracted as, say,

√
d.

The curvature in the transformed space can be measured by first considering
in the original space three aligned points i, k, j with dik = dkj = ε and
dij = 2ε. The Menger’s curvature κ is defined as the limit (Blumenthal
1953, p. 75)

κ = lim
ε→0

4Ãijk(ε)

d̃ij(ε) d̃jk(ε) d̃ik(ε)
,

where Ãijk is the area of the triangle ijk in the transformed space and d̃
denotes the length of the corresponding sides. Heron’s formula

16Ã2
ijk = (d̃ij+d̃jk+d̃ki)(−d̃ij+d̃jk+d̃ki)(d̃ij−d̃jk+d̃ki)(d̃ij+d̃jk−d̃ki)

yields after simplification

κ2 = lim
ε→0

4ϕ(ε2)− ϕ(4ε2)

ϕ2(ε2)
= − 6 ϕ′′(0)

(ϕ′(0))2
≥ 0 ,

where l’Hospital’s rule has been used twice in the last equality, under the
assumption of rectifiability.
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Figure 1. a) Initial configuration, on which the transformation ϕ(D) = D0.4 is applied. b)
and c) depict the low-dimensional reconstruction of the transformed configuration, obtained
by weighted MDS (Theorem 4 where a = f is the uniform distribution. d) Scree graph, pro-
portional to the eigenvalues (8).

4. Illustrations

4.1 Gr id

Consider n = 100 points forming the bidimensional grid of Figure
1a), on which the transformation ϕ(D) = D0.4 is applied. Figures 1b)
and 1c) depict the four first dimensions of the transformed configuration,
expressing altogether 62% of the total inertia.

4.2 Rod

Figure 2 depicts the low-order projections (b, c, d, e and f) of the non-
rectifiable square root transformation D̃ =

√
D of a quasi-unidimensional

rod of n = 1′000 points, uniformly generated as X1 ∼ U(0, 1000) and
X2 ∼ U(0, 1) (a). As expected, the transformed rod is bent, although the
curvature formula of Section 3.4 does not applies here (ϕ′(0) = ∞).

The transformation of a line is called “screw line” by Von Neumann
and Schoenberg (1941), and “helix” by Kolmogorov (1940) – an adequate
terminology in view of Figure 2.
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Figure 2. Low-order projections (b, c, d, e and f) of the square root transformation D̃ =
√
D

of a finite rod (a).

The first MDS dimensions turn out to express 61.0%, respectively
15.1% of the relative inertia. Analytic arguments, to be developed in a forth-
coming publication, demonstrate the corresponding exact quantities to be
6
π2 = 60.8%, respectively 15

2π2 = 15.2% for a line.

5. Applications

Arguably, all traditional methods in Data Analysis involve, explicitly
or not, squared Euclidean distances between observations. Transforming the
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latter hence extends the scope of classical methods quite straightforwardly
– as briefly illustrated below.

5.1 Distance-based Discriminant Analysis

Consider a collection of objects i = 1, . . . , n endowed with p-dimen-
sional features, yielding squared Euclidean distances Dij between objects,
possibly after standardization and/or orthogonalization of the features (Ma-
halanobis distances). Also, suppose that each object belongs to a group
g = 1, . . . m. An elementary discriminant strategy would consist in assign-
ing each object i to the group g whose centroid is the closest to i, that is to
assign i to argming Dig: this is the linear discriminant prescription of Fisher
(1936), successfully applied on the Iris Data (n = 150, p = 4, m = 3) with
a percentage of well-classified individuals as high as 97%.

The same strategy is bound to fail with the data of Figure 3 (n = 150,
p = 2, m = 3), reaching a percentage of well-classified individuals of 35%,
close to the expected value of 33% under random attribution.

However, linear discrimination can be attempted on Schoenberg trans-
formations of the original distances, resulting in the algorithm (see (5)):

Distance-based discriminant algorithm:
1) compute D̃ig̃ =

∑n
j=1 f

g
j D̃ij− 1

2

∑n
j,k=1 f

g
j f

g
k D̃jk, where D̃ij = ϕ(Dij)

and where f g
j = I(i ∈ g)/ng (with ng =

∑
j∈g 1) is the distribution of

objects i in group g
2) assign object i to group argming̃ D̃ig̃.

Figure 4 shows the resulting proportion of well-classified individuals,
for various one-parameter families of transformations ϕ(D|a). In this data
set, the maximum proportion of well-classified individuals reaches 100% for
the Gaussian transformation (for a ≥ 0.65). That is, a sufficiently non-linear
Schoenberg transformation succeeds in mapping the initial configuration of
Figure 3 in such a way that the three groups can be enclosed in three associ-
ated disjoint hyperspheres.

Close results are, ever since the nineties, rightly claimed by Machine
Learning, where the non-linear, higher-dimensional embedding enabling the
linear separation of groups is emblematic (see e.g. Chen, He, and Wang
2007 and references therein). Also, Cuadras, Fortina, and Oliva (1997) have,
in another context, proposed the same algorithm – whose conceptual, formal
and computational simplicity should be emphasized.

5.2 Robust Estimates of Location; Robust PCA

In one dimension, determining the point a minimizing
∑

i fi(xi−a)2

yields the weighted mean; minimizing
∑

i fi|xi − a| yields the weighted
median. More generally, finding the centroid a minimizing the quantity
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Figure 3. Top left: three groups of 50 individuals each, uniformly generated on concentric
circles of radii 1, 3 and 5, with a radial standard deviation of 0.1, 0.3 and 0.2, respectively.
MDS reconstruction of the configuration transformed as ϕ(D) = 1 − exp(−0.65 D) (see
text), in dimensions 1 and 2 (top right) and dimensions 3 and 4 (bottom).

∑

i

fiϕ(Dia) with Dia = ‖xi − a‖2 , a =
∑

i

αixi and
∑

i

αi = 1

(12)

defines a centroid a as the solution of the iterative scheme (see (5) and
Bavaud 2011 for details)

αi =
fiϕ′(Dia)∑
j fjϕ

′(Dja)
Dia =

∑

j

αjDij −
1

2

∑

jk

αjαkDjk . (13)

The centroid a is a robust estimate of location, analogous to a M -
estimate (e.g. Hampel, Ronchetti, Rousseeuw, and Stahel 1986 and ref-
erences therein), valid for any dimension: the term ϕ′(Dia) downweights
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Figure 4. Proportion of well-classified individuals, after Schoenberg transformation of the
original data of Figure 3. a) power transformation ϕ(D) = Da; note that a > 1 does not
correspond to a valid transformation, and results in a decrease of the proportion below the
chance level. b) logarithmic transformation ϕ(D) = ln(1+aD). c) Gaussian transformation
ϕ(D) = 1− exp(−aD).

distant observations, and many solutions coexist in general (local minima),
in particular when ϕ′(D) is rapidly decreasing.

Figure 5 left depicts the bidimensional dataset faithful (Härdle
1991), together with the trajectory of the centroid a resulting from the trans-
form ϕ(D) = 1−exp(−λD)) where λ ∈ (0, 2.7), with initial values a0 uni-
formly distributed in the range of values. λ → 0 yields the mean a = (0, 0).
Increasing λ pushes the centroid towards the center of the NE cluster, or, for
λ ≥ 0.7, towards the center of the SW cluster as well. In the limit λ → ∞,
each observation yields a local minimum; in that respect, (13) outlines a
clustering scheme, where λ controls the number of groups.

Distributions α (13) also permit to define a “robust covariance” be-
tween two variables x and y as

3 01
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Figure 5. Left: trajectory of the centroid a (solid circles) for various values of λ ∈ (0, 2.7).
Right: behavior of the associated “robust correlation”, related to the two families of centroids.

covα(x, y) =
n∑

i=1

αi(xi −
∑

j

αjxj)(yi −
∑

k

αkyk)

whose spectral decomposition defines in turn a “robust PCA scheme”, al-
ternative to other proposals found in the literature (e.g. Campbell 1980;
Verboven and Hubert 2005; and references therein). Figure 5 right depicts
the behavior of the associated “robust correlation”, with minima lying in the
NE cluster (lower branch) or the SW cluster (upper branch).

6. Conclusion

The Machine Learning literature abounds in algorithms based upon
Gaussian and other radial kernels: the procedures exposed in Section 5 ex-
emplify and specify some among many possible applications, aimed at il-
lustrating the operational content of the theory. Higher-order “principled”
embeddings, pioneered by the work of Vapnik (1995) and embodied in this
article by the class of Schoenberg transformations, are arguably about to be
incorporated in standard Data Analysis, to be routinely used in applications,
and taught at graduate and undergraduate non-specialized audiences.

The two approaches (kernels versus distances) appear to be equiva-
lent, as illustrated by the results of Section 2. In particular, to the “kernel
trick” stating that all the quantities of interest depend upon kernels only
(and not upon the object features themselves) corresponds an equally effi-
cient “distance trick”, stating that Euclidean distances themselves (and not
their underlying coordinates) express all the real quantities of interest, as in
(5), (6), or Section 5; see also Schölkopf (2000) and Williams (2002).
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Reexpressing the Machine Learning formalism in terms of Euclidean
distances, rather than kernels, is hence not only possible, but arguably more
intuitive; some related progress on the question “which transformation should
be used in which context”, so far open, is also expected.
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