89 research outputs found

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Molecular Cocrystals of Carboxylic Acids. IX. Carboxylic Acid Interactions With Organic Heterocyclic Bases. The Crystal Structures of the Adducts of (2,4-Dichlorophenoxy)acetic Acid With 3-Hydroxypyridine, 2,4,6-Trinitrobenzoic Acid With 2-Aminopyrimidine, and 4-Nitrobenzoic Acid With 3-Amino-1,2,4-triazole

    No full text
    The cocrystal adducts of a number of carboxylic acids with organic heterocyclic bases have been prepared, and their structures and intermolecular interactions interpreted through X-ray diffraction and infrared spectroscopic techniques. The crystal structures of three of these compounds, the 1 : 1 adducts [{(2,4-dich1orophenoxy)acetic acid)(3-hydroxypyridine)] (1), [(2,4,6-trinitrobenzoie acid)(2-aminopyrimidine)] (2), and [(4-nitrobenzoic acid)(3-amino- 1,2,4-trimole)] (3), have been determined by single-crystal X-ray diffraction and refined to residuals R 0.026, 0.033 and 0.040 for 1814, 1531 and 727 observed reflections, respectively

    Product Liability in Medicine

    No full text

    Morphologic and regulatory aspects of prostatic function

    No full text

    JET experience on managing radioactive waste and implications for ITER

    No full text
    The reduced radiotoxicity and half-life of radioactive waste arisings from nuclear fusion reactors as compared to current fission reactors is one of the key benefits of nuclear fusion. As a result of the research programme at the Joint European Torus (JET), significant experience on the management of radioactive waste has been gained which will be of benefit to ITER and the nuclear fusion community.The successful management of radioactive waste is dependent on accurate and efficient tracking and characterisation of waste streams. To accomplish this all items at JET which are removed from radiological areas are identified and pre-characterised, by recording the radiological history, before being removed from or moved between radiological areas. This system ensures a history of each item is available when it is finally consigned as radioactive waste and also allows detailed forecasting of future arisings. All radioactive waste generated as part of JET operations is transferred to dedicated, on-site, handling facilities for further sorting, sampling and final streaming for off-site disposal. Tritium extraction techniques including leaching, combustion and thermal treatment followed by liquid scintillation counting are used to determine tritium content.Recent changes to government legislation and Culham specific disposal permit conditions have allowed CCFE to adopt additional disposal routes for fusion wastes requiring new treatment and analysis techniques. Facilities currently under construction include a water de-tritiation facility and a materials de-tritiation facility, both of which are relevant for ITER. The procedures used to manage radioactive waste from generation to off-site disposal have been assessed for relevance to ITER and a number have been shown to be significant. The procedures and de-tritiation factors demonstrated by radioactive waste treatment plants currently under construction will be important to tritium recovery and waste minimisation in ITER and DEMO

    COREDIV and SOLPS Numerical Simulations of the Nitrogen Seeded JET ILW L-mode Discharges

    No full text
    In this paper we present the comparison of simulations with the numerical codes COREDIV and SOLPS5.0 for JET L-mode discharges with ITER like wall (ILW). The simulations have been performed for L-mode shots with and without nitrogen seeding (#82291 - 9) which are characterised by relatively low auxiliary heating power (PNBI = 1.1 MW) and low electron density (ne = 2.35 × 1019 m–3). Comparisons are made to the experimental measurements (e.g. radiation levels, plasma profiles) and the differences between the results from the two codes (e.g. temperature and density profiles at the outer divertor plate) are shown and discussed
    corecore