210 research outputs found

    An investigation of the use of otolith microchemistry to discriminate reef fish populations and assess the movement of individuals.

    Get PDF
    The main objective of this thesis was to assess the degree of connectivity among populations of two highly abundant Caribbean reef fish (Stegasies partitus, Bicolor damselfish, and Haemulon flovolineatum , French grunt) at specific, but different portions of their life history; pelagic and demersal stages. In Chapter 2 (Section A) I assessed the classification of individuals to the site and time they were collected. The classification of S. partitus to their collection sites, separated by as little as 5 km, was moderately successful, while investigations of the temporal variability revealed substantial variability at the scale of two weeks. This spatial and temporal variability in otolith microchemistry suggested that investigations of connectivity were possible, but would require frequent recalibration of chemical signatures. Because the connectivity analysis of Chapter 2 relied upon the spatial variability in otolith chemistry, I investigated how the discrimination of populations could be improved in Chapter 3. An assumption of the connectivity analysis used in Chapter 2 was that otolith elemental concentrations did not differ between fish of different life stages (i.e., larval/pelagic stage with its core chemistry versus juvenile/demersal stage with its edge chemistry). In Chapter 4, I assessed whether there was ontogenetic variability in otolith microchemistry by comparing the otolith chemistry of pre-hatch embryos to that of post-settlement juveniles collected at the same site and time. Results indicated that elemental concentrations of embryo otoliths were between 2 and 325 times greater than that of juvenile edge chemistry (and 2 to 94 times greater than water chemistry) for Mn, Zn, Ba, Ce, and Pb. In Chapter 5 of Section B, I focused on the demersal stage of reef fish and whether otolith microchemistry could be used to discriminate H. flavolineatum caged in adjacent mangrove and coral reef sites in Belize and Bahamas. Significant variability in otolith trace elemental chemistry was detected among sites and habitats, which resulted in the classification of individuals separated by as little as 0.25 km (average correct classifications was between 68% and 85%). In Chapter 6, I expanded the sampling of H. favolineatum (19 sites throughout Turneffe Atoll: 9 mangrove and 11 reef sites, separated by 0.8 to 20m kms) to assess the extent to which individuals could be correctly assigned to the sites from which they were collected when natural movements were permitted (i.e., in the absence of cages, see Chapter 5). In Chapter 7, I discuss the findings of each of these chapters in the context of using otolith microchemistry in ecological investigations. (Abstract shortened by UMI.)Dept. of Biological Sciences. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .C45. Source: Dissertation Abstracts International, Volume: 66-11, Section: B, page: 5776. Thesis (Ph.D.)--University of Windsor (Canada), 2005

    The effects of spatial scale on the structure of coral reef fish populations and assemblages.

    Get PDF
    A fundamental question in ecology is how spatial scale can influence the distribution and abundance of species and the structure of assemblages. The purpose of this work was to: (A) examine coral reef fish assemblages of St. Croix, U.S. Virgin Islands for species-area relationships; (B) understand what determines this relationship; and (C) determine relationships between habitat variables and assemblages and populations of reef fish at several spatial scales. Results indicated a positive relationship between species richness of reef fish and coral reef area at all reef sites (n = 14), where log10 area explained 66--96% of the variation in log 10 species richness. Tests were then conducted to understand what determined the species-area relationships. Five independent tests indicated that the random placement hypothesis did not entirely account for the species-area relationship. Instead habitat diversity and habitat influence hypotheses were found to better explain the variation in species richness. Upon closer examination of relationships between habitat variables and populations and assemblages of reef fish, it was determined that habitat variables that significantly accounted for variation in abundances of individuals and/or species richness varied across spatial scales as well as biological levels of resolution.Dept. of Biological Sciences. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2000 .C45. Source: Masters Abstracts International, Volume: 39-02, page: 0442. Adviser: P. F. Sale. Thesis (M.Sc.)--University of Windsor (Canada), 2000

    A meta model framework for risk analysis, diagnosis and simulation

    No full text
    International audienceThe goal of risk analysis is to identify events that may have one or several undesirable consequences on a system, and to assess the likelihood and severity of these consequences. A lot of methods may be used to conduct risk analysis such as Preliminary Hazard Analysis (PHA), and Failure Mode Effects Analysis (FMEA). In most of these methods, the obtained information may be used to build a risk model. Very often, the next step after risk analysis is, to study the behavior of the system if the undesirable events occur, in order to evaluate its performance in degraded conditions and its robustness or resilience. An approach allowing integrated risk analysis and simulation would be desirable. Such an approach has been proposed for business process management [Tjoa et al., 2011]. The goal of this paper is to present a meta model, suited to socio-technical systems, that allows describing the system to analyze, the result of the risk analysis and the required aspects of dynamical system behavior in order automatically perform simulation under degraded conditions. The model is an extension of the FIS model presented in [Negrichi et al., 2012]. The meta model may also be used for fault diagnosis as it can be used for generating redundancy relation and performing root cause search [Flaus et al., 2011]. Our meta model consists of three main modules: the structural view, the dysfunctional view and the view of the evolution.: • The structural view (SysFis): defines the architecture of the analyzed system, breaks it down into subsystems, and describes the characteristics of each subsystem and the material entities used. This is the basic view. that describes the structure of the installation or the analyzed object in a relatively simple manner, by showing the various interactions systems, and specifying, if necessary their functions and the material components (human, technical or informational) tha

    Adiabatic passage and ensemble control of quantum systems

    Full text link
    This paper considers population transfer between eigenstates of a finite quantum ladder controlled by a classical electric field. Using an appropriate change of variables, we show that this setting can be set in the framework of adiabatic passage, which is known to facilitate ensemble control of quantum systems. Building on this insight, we present a mathematical proof of robustness for a control protocol -- chirped pulse -- practiced by experimentalists to drive an ensemble of quantum systems from the ground state to the most excited state. We then propose new adiabatic control protocols using a single chirped and amplitude shaped pulse, to robustly perform any permutation of eigenstate populations, on an ensemble of systems with badly known coupling strengths. Such adiabatic control protocols are illustrated by simulations achieving all 24 permutations for a 4-level ladder

    Expressiveness of Temporal Query Languages: On the Modelling of Intervals, Interval Relationships and States

    Get PDF
    Storing and retrieving time-related information are important, or even critical, tasks on many areas of Computer Science (CS) and in particular for Artificial Intelligence (AI). The expressive power of temporal databases/query languages has been studied from different perspectives, but the kind of temporal information they are able to store and retrieve is not always conveniently addressed. Here we assess a number of temporal query languages with respect to the modelling of time intervals, interval relationships and states, which can be thought of as the building blocks to represent and reason about a large and important class of historic information. To survey the facilities and issues which are particular to certain temporal query languages not only gives an idea about how useful they can be in particular contexts, but also gives an interesting insight in how these issues are, in many cases, ultimately inherent to the database paradigm. While in the area of AI declarative languages are usually the preferred choice, other areas of CS heavily rely on the extended relational paradigm. This paper, then, will be concerned with the representation of historic information in two well known temporal query languages: it Templog in the context of temporal deductive databases, and it TSQL2 in the context of temporal relational databases. We hope the results highlighted here will increase cross-fertilisation between different communities. This article can be related to recent publications drawing the attention towards the different approaches followed by the Databases and AI communities when using time-related concepts

    A DNA barcode reference library for Swiss butterflies and forester moths as a tool for species identification, systematics and conservation.

    Get PDF
    Butterfly monitoring and Red List programs in Switzerland rely on a combination of observations and collection records to document changes in species distributions through time. While most butterflies can be identified using morphology, some taxa remain challenging, making it difficult to accurately map their distributions and develop appropriate conservation measures. In this paper, we explore the use of the DNA barcode (a fragment of the mitochondrial gene COI) as a tool for the identification of Swiss butterflies and forester moths (Rhopalocera and Zygaenidae). We present a national DNA barcode reference library including 868 sequences representing 217 out of 224 resident species, or 96.9% of Swiss fauna. DNA barcodes were diagnostic for nearly 90% of Swiss species. The remaining 10% represent cases of para- and polyphyly likely involving introgression or incomplete lineage sorting among closely related taxa. We demonstrate that integrative taxonomic methods incorporating a combination of morphological and genetic techniques result in a rate of species identification of over 96% in females and over 98% in males, higher than either morphology or DNA barcodes alone. We explore the use of the DNA barcode for exploring boundaries among taxa, understanding the geographical distribution of cryptic diversity and evaluating the status of purportedly endemic taxa. Finally, we discuss how DNA barcodes may be used to improve field practices and ultimately enhance conservation strategies

    Enhancing Egress Drills: Preparation and Assessment of Evacuee Performance

    Get PDF
    This article explores how egress drills-specifically those related to fire incidents-are currently used, their impact on safety levels, and the insights gained from them. It is suggested that neither the merits of egress drills are well understood, nor the impact on egress performance well characterized. In addition, the manner in which they are conducted varies both between and within regulatory jurisdictions. By investigating their strengths and limitations, this article suggests opportunities for their enhancement possibly through the use of other egress models to support and expand upon the benefits provided. It is by no means suggested that drills are not important to evacuation safety-only that their inconsistent use and the interpretation of the results produced may mean we (as researchers, practitioners, regulators, and stakeholders) are not getting the maximum benefit out of this important tool

    An iconic language for the graphical representation of medical concepts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many medication errors are encountered in drug prescriptions, which would not occur if practitioners could remember the drug properties. They can refer to drug monographs to find these properties, however drug monographs are long and tedious to read during consultation. We propose a two-step approach for facilitating access to drug monographs. The first step, presented here, is the design of a graphical language, called VCM.</p> <p>Methods</p> <p>The VCM graphical language was designed using a small number of graphical primitives and combinatory rules. VCM was evaluated over 11 volunteer general practitioners to assess if the language is easy to learn, to understand and to use. Evaluators were asked to register their VCM training time, to indicate the meaning of VCM icons and sentences, and to answer clinical questions related to randomly generated drug monograph-like documents, supplied in text or VCM format.</p> <p>Results</p> <p>VCM can represent the various signs, diseases, physiological states, life habits, drugs and tests described in drug monographs. Grammatical rules make it possible to generate many icons by combining a small number of primitives and reusing simple icons to build more complex ones. Icons can be organized into simple sentences to express drug recommendations. Evaluation showed that VCM was learnt in 2 to 7 hours, that physicians understood 89% of the tested VCM icons, and that they answered correctly to 94% of questions using VCM (versus 88% using text, <it>p </it>= 0.003) and 1.8 times faster (<it>p </it>< 0.001).</p> <p>Conclusion</p> <p>VCM can be learnt in a few hours and appears to be easy to read. It can now be used in a second step: the design of graphical interfaces facilitating access to drug monographs. It could also be used for broader applications, including the design of interfaces for consulting other types of medical document or medical data, or, very simply, to enrich medical texts.</p

    Recent Region-wide Declines in Caribbean Reef Fish Abundance

    Get PDF
    Profound ecological changes are occurring on coral reefs throughout the tropics, with marked coral cover losses and concomitant algal increases, particularly in the Caribbean region. Historical declines in the abundance of large Caribbean reef fishes likely reflect centuries of overexploitation. However, effects of drastic recent degradation of reef habitats on reef fish assemblages have yet to be established. By using meta-analysis, we analyzed time series of reef fish density obtained from 48 studies that include 318 reefs across the Caribbean and span the time period 1955–2007. Our analyses show that overall reef fish density has been declining significantly for more than a decade, at rates that are consistent across all subregions of the Caribbean basin (2.7% to 6.0% loss per year) and in three of six trophic groups. Changes in fish density over the past half-century are modest relative to concurrent changes in benthic cover on Caribbean reefs. However, the recent significant decline in overall fish abundance and its consistency across several trophic groups and among both fished and nonfished species indicate that Caribbean fishes have begun to respond negatively to habitat degradation
    corecore