3,283 research outputs found

    Occupational balance: What tips the scales for new students?

    Get PDF
    The open question, ‘What prevents you from reaching occupational balance?’, was posed within a questionnaire aimed at exploring the meanings of occupation, health and wellbeing with a cohort of first-year occupational therapy students during their initial few weeks at university. Their written responses to the question about occupational balance were analysed and are discussed in this paper. Not surprisingly, occupational balance appeared to be achieved by only a few and more by chance than design. People, time and money factors were identified as the main impediments to achieving occupational balance, with psychological and emotional pressures being at the forefront. Interestingly, despite these barriers, the overall educational benefit of considering the occupational balance question in this way raised the students’ awareness of its relationship to health and wellbeing. This increased awareness might have longer-term health benefits, both personally and professionally, which would be worthy of further research

    A detailed analysis of a multi-agent diverse team

    Get PDF
    In an open system we can have many different kinds of agents. However, it is a challenge to decide which agents to pick when forming multi-agent teams. In some scenarios, agents coordinate by voting continuously. When forming such teams, should we focus on the diversity of the team or on the strength of each member? Can a team of diverse (and weak) agents outperform a uniform team of strong agents? We propose a new model to address these questions. Our key contributions include: (i) we show that a diverse team can overcome a uniform team and we give the necessary conditions for it to happen; (ii) we present optimal voting rules for a diverse team; (iii) we perform synthetic experiments that demonstrate that both diversity and strength contribute to the performance of a team; (iv) we show experiments that demonstrate the usefulness of our model in one of the most difficult challenges for Artificial Intelligence: Computer Go

    Multilevel models of age-related changes in facial shape in adolescents

    Get PDF
    Here we study the effects of age on facial shape in adolescents by using a method called multilevel principal components analysis (mPCA). An associated multilevel multivariate probability distribution is derived and expressions for the (conditional) probability of age-group membership are presented. This formalism is explored via Monte Carlo (MC) simulated data in the first dataset; where age is taken to increase the overall scale of a three-dimensional facial shape represented by 21 landmark points and all other “subjective” variations are related to the width of the face. Eigenvalue plots make sense and modes of variation correctly identify these two main factors at appropriate levels of the mPCA model. Component scores for both single-level PCA and mPCA show a strong trend with age. Conditional probabilities are shown to predict membership by age group and the Pearson correlation coefficient between actual and predicted group membership is r = 0.99. The effects of outliers added to the MC training data are reduced by the use of robust covariance matrix estimation and robust averaging of matrices. These methods are applied to another dataset containing 12 GPA-scaled (3D) landmark points for 195 shapes from 27 white, male schoolchildren aged 11 to 16 years old. 21% of variation in the shapes for this dataset was accounted for by age. Mode 1 at level 1 (age) via mPCA appears to capture an increase in face height with age, which is consistent with reported pubertal changes in children. Component scores for both single-level PCA and mPCA again show a distinct trend with age. Conditional probabilities are again shown to reflect membership by age group and the Pearson correlation coefficient is given by r = 0.63 in this case. These analyses are an excellent first test of the ability of multilevel statistical methods to model age-related changes in facial shape in adolescents

    Elevated expression of artemis in human fibroblast cells is associated with cellular radiosensitivity and increased apoptosis

    Get PDF
    Copyright @ 2012 Nature Publishing GroupThis article has been made available through the Brunel Open Access Publishing Fund.Background: The objective of this study was to determine the molecular mechanism(s) responsible for cellular radiosensitivity in two human fibroblast cell lines 84BR and 175BR derived from two cancer patients. Methods: Clonogenic assays were performed following exposure to increasing doses of gamma radiation to confirm radiosensitivity. γ-H2AX foci assays were used to determine the efficiency of DNA double strand break (DSB) repair in cells. Quantitative-PCR (Q-PCR) established the expression levels of key DNA DSB repair proteins. Imaging flow cytometry using Annexin V-FITC was used to compare artemis expression and apoptosis in cells. Results: Clonogenic cellular hypersensitivity in the 84BR and 175BR cell lines was associated with a defect in DNA DSB repair measured by the γ-H2AX foci assay. Q-PCR analysis and imaging flow cytometry revealed a two-fold overexpression of the artemis DNA repair gene which was associated with an increased level of apoptosis in the cells before and after radiation exposure. Over-expression of normal artemis protein in a normal immortalised fibroblast cell line NB1-Tert resulted in increased radiosensitivity and apoptosis. Conclusion: We conclude elevated expression of artemis is associated with higher levels of DNA DSB, radiosensitivity and elevated apoptosis in two radio-hypersensitive cell lines. These data reveal a potentially novel mechanism responsible for radiosensitivity and show that increased artemis expression in cells can result in either radiation resistance or enhanced sensitivity.This work was supported in part by The Vidal Sassoon Foundation USA. This article is made available through the Brunel Open Access Publishing Fund

    The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species

    Get PDF
    Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13 kb

    Time correlations and 1/f behavior in backscattering radar reflectivity measurements from cirrus cloud ice fluctuations

    Full text link
    The state of the atmosphere is governed by the classical laws of fluid motion and exhibits correlations in various spatial and temporal scales. These correlations are crucial to understand the short and long term trends in climate. Cirrus clouds are important ingredients of the atmospheric boundary layer. To improve future parameterization of cirrus clouds in climate models, it is important to understand the cloud properties and how they change within the cloud. We study correlations in the fluctuations of radar signals obtained at isodepths of winter and fall cirrus clouds. In particular we focus on three quantities: (i) the backscattering cross-section, (ii) the Doppler velocity and (iii) the Doppler spectral width. They correspond to the physical coefficients used in Navier Stokes equations to describe flows, i.e. bulk modulus, viscosity, and thermal conductivity. In all cases we find that power-law time correlations exist with a crossover between regimes at about 3 to 5 min. We also find that different type of correlations, including 1/f behavior, characterize the top and the bottom layers and the bulk of the clouds. The underlying mechanisms for such correlations are suggested to originate in ice nucleation and crystal growth processes.Comment: 33 pages, 9 figures; to appear in the Journal of Geophysical Research - Atmosphere

    RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus

    Get PDF
    Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions

    An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1

    Get PDF
    open access articlePseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and biofilm-associated antibiotic resistance. Our model employs a genomics-driven workflow to assemble the complete MPAO1 genome, identify unique and conserved genes by comparative genomics with the PAO1 reference strain and genes missed within existing assemblies by proteogenomics. Among over 200 unique MPAO1 genes, we identified six general essential genes that were overlooked when mapping public Tn-seq data sets against PAO1, including an antitoxin. Genomic data were integrated with phenotypic data from an experimental workflow using a user-friendly, soft lithography-based microfluidic flow chamber for biofilm growth and a screen with the Tn-mutant library in microtiter plates. The screen identified hitherto unknown genes involved in biofilm growth and antibiotic resistance. Experiments conducted with the flow chamber across three laboratories delivered reproducible data on P. aeruginosa biofilms and validated the function of both known genes and genes identified in the Tn-mutant screens. Differential protein abundance data from planktonic cells versus biofilm confirmed the upregulation of candidates known to affect biofilm formation, of structural and secreted proteins of type VI secretion systems, and provided proteogenomic evidence for some missed MPAO1 genes. This integrated, broadly applicable model promises to improve the mechanistic understanding of biofilm formation, antimicrobial tolerance, and resistance evolution in biofilms
    corecore