107 research outputs found

    Transposon Excision from an Atypical Site: A Mechanism of Evolution of Novel Transposable Elements

    Get PDF
    The role of transposable elements in sculpting the genome is well appreciated but remains poorly understood. Some organisms, such as humans, do not have active transposons; however, transposable elements were presumably active in their ancestral genomes. Of specific interest is whether the DNA surrounding the sites of transposon excision become recombinogenic, thus bringing about homologous recombination. Previous studies in maize and Drosophila have provided conflicting evidence on whether transposon excision is correlated with homologous recombination. Here we take advantage of an atypical Dissociation (Ds) element, a maize transposon that can be mobilized by the Ac transposase gene in Arabidopsis thaliana, to address questions on the mechanism of Ds excision. This atypical Ds element contains an adjacent 598 base pairs (bp) inverted repeat; the element was allowed to excise by the introduction of an unlinked Ac transposase source through mating. Footprints at the excision site suggest a micro-homology mediated non-homologous end joining reminiscent of V(D)J recombination involving the formation of intra-helix 3β€² to 5β€² trans-esterification as an intermediate, a mechanism consistent with previous observations in maize, Antirrhinum and in certain insects. The proposed mechanism suggests that the broken chromosome at the excision site should not allow recombinational interaction with the homologous chromosome, and that the linked inverted repeat should also be mobilizable. To test the first prediction, we measured recombination of flanking chromosomal arms selected for the excision of Ds. In congruence with the model, Ds excision did not influence crossover recombination. Furthermore, evidence for correlated movement of the adjacent inverted repeat sequence is presented; its origin and movement suggest a novel mechanism for the evolution of repeated elements. Taken together these results suggest that the movement of transposable elements themselves may not directly influence linkage. Possibility remains, however, for novel repeated DNA sequences produced as a consequence of transposon movement to influence crossover in subsequent generations

    MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in high-throughput technologies and bioinformatics have transformed gene expression profiling methodologies. The results of microarray experiments are often validated using reverse transcription quantitative PCR (RT-qPCR), which is the most sensitive and reproducible method to quantify gene expression. Appropriate normalisation of RT-qPCR data using stably expressed reference genes is critical to ensure accurate and reliable results. Mi(cro)RNA expression profiles have been shown to be more accurate in disease classification than mRNA expression profiles. However, few reports detailed a robust identification and validation strategy for suitable reference genes for normalisation in miRNA RT-qPCR studies.</p> <p>Methods</p> <p>We adopt and report a systematic approach to identify the most stable reference genes for miRNA expression studies by RT-qPCR in colorectal cancer (CRC). High-throughput miRNA profiling was performed on ten pairs of CRC and normal tissues. By using the mean expression value of all expressed miRNAs, we identified the most stable candidate reference genes for subsequent validation. As such the stability of a panel of miRNAs was examined on 35 tumour and 39 normal tissues. The effects of normalisers on the relative quantity of established oncogenic (<it>miR-21 </it>and <it>miR-31</it>) and tumour suppressor (<it>miR-143 </it>and <it>miR-145</it>) target miRNAs were assessed.</p> <p>Results</p> <p>In the array experiment, <it>miR-26a</it>, <it>miR-345</it>, <it>miR-425 </it>and <it>miR-454 </it>were identified as having expression profiles closest to the global mean. From a panel of six miRNAs (<it>let-7a</it>, <it>miR-16</it>, <it>miR-26a</it>, <it>miR-345</it>, <it>miR-425 </it>and <it>miR-454</it>) and two small nucleolar RNA genes (<it>RNU48 </it>and <it>Z30</it>), <it>miR-16 </it>and <it>miR-345 </it>were identified as the most stably expressed reference genes. The combined use of <it>miR-16 </it>and <it>miR-345 </it>to normalise expression data enabled detection of a significant dysregulation of all four target miRNAs between tumour and normal colorectal tissue.</p> <p>Conclusions</p> <p>Our study demonstrates that the top six most stably expressed miRNAs (<it>let-7a</it>, <it>miR-16</it>, <it>miR-26a</it>, <it>miR-345</it>, <it>miR-425 </it>and <it>miR-454</it>) described herein should be validated as suitable reference genes in both high-throughput and lower throughput RT-qPCR colorectal miRNA studies.</p

    Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy

    Get PDF
    FXR1 is an alternatively spliced gene that encodes RNA binding proteins (FXR1P) involved in muscle development. In contrast to other tissues, cardiac and skeletal muscle express two FXR1P isoforms that incorporate an additional exon-15. We report that recessive mutations in this particular exon of FXR1 cause congenital multi-minicore myopathy in humans and mice. Additionally, we show that while Myf5-dependent depletion of all FXR1P isoforms is neonatal lethal, mice carrying mutations in exon-15 display non-lethal myopathies which vary in severity depending on the specific effect of each mutation on the protein

    Perioperative oxygen fraction – effect on surgical site infection and pulmonary complications after abdominal surgery: a randomized clinical trial. Rationale and design of the PROXI-Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A high perioperative inspiratory oxygen fraction may reduce the risk of surgical site infections, as bacterial eradication by neutrophils depends on wound oxygen tension. Two trials have shown that a high perioperative inspiratory oxygen fraction (Fi<smcaps>O</smcaps><sub>2 </sub>= 0.80) significantly reduced risk of surgical site infections after elective colorectal surgery, but a third trial was stopped early because the frequency of surgical site infections was more than doubled in the group receiving Fi<smcaps>O</smcaps><sub>2 </sub>= 0.80. It has not been settled if a high inspiratory oxygen fraction increases the risk of pulmonary complications, such as atelectasis, pneumonia and respiratory failure. The aim of our trial is to assess the potential benefits and harms of a high perioperative oxygen fraction in patients undergoing abdominal surgery.</p> <p>Methods and design</p> <p>The PROXI-Trial is a randomized, patient- and assessor blinded trial of perioperative supplemental oxygen in 1400 patients undergoing acute or elective laparotomy in 14 Danish hospitals. Patients are randomized to receive either 80% oxygen (Fi<smcaps>O</smcaps><sub>2 </sub>= 0.80) or 30% oxygen (Fi<smcaps>O</smcaps><sub>2 </sub>= 0.30) during surgery and for the first 2 postoperative hours. The primary outcome is surgical site infection within 14 days. The secondary outcomes are: atelectasis, pneumonia, respiratory failure, re-operation, mortality, duration of postoperative hospitalization, and admission to intensive care unit. The sample size allows detection of a 33% relative risk reduction in the primary outcome with 80% power.</p> <p>Discussion</p> <p>This trial assesses benefits and harms of a high inspiratory oxygen fraction, and the trial may be generalizable to a general surgical population undergoing laparotomy.</p> <p>Trial registration</p> <p>ClinicalTrials.gov identifier: NCT00364741.</p

    Phenotypic Screen of Early-Developing Larvae of the Blood Fluke, Schistosoma mansoni, using RNA Interference

    Get PDF
    RNA interference (RNAi) represents the only method currently available for manipulating gene-specific expression in Schistosoma spp., although application of this technology as a functional genomic profiling tool has yet to be explored. In the present study 32 genes, including antioxidants, transcription factors, cell signaling molecules and metabolic enzymes, were selected to determine if gene knockdown by RNAi was associated with morphologically definable phenotypic changes in early intramolluscan larval development. Transcript selection was based on their high expression in in vitro cultured S. mansoni primary sporocysts and/or their potential involvement in developmental processes. Miracidia were allowed to transform to sporocysts in the presence of synthesized double-stranded RNAs (dsRNAs) and cultivated for 7 days, during which time developing larvae were closely observed for phenotypic changes including failure/delay in transformation, loss of motility, altered growth and death. Of the phenotypes evaluated, only one was consistently detected; namely a reduction in sporocyst size based on length measurements. The size-reducing phenotype was observed in 11 of the 33 (33%) dsRNA treatment groups, and of these 11 phenotype-associated genes (superoxide dismutase, Smad1, RHO2, Smad2, Cav2A, ring box, GST26, calcineurin B, Smad4, lactate dehydrogenase and EF1α), only 6 demonstrated a significant and consistent knockdown of specific transcript expression. Unexpectedly one phenotype-linked gene, superoxide dismutase (SOD), was highly induced (∼1600-fold) upon dsRNA exposure. Variation in dsRNA-mediated silencing effects also was evident in the group of sporocysts that lacked any definable phenotype. Out of 22 nonphenotype-expressing dsRNA treatments (myosin, PKCB, HEXBP, calcium channel, Sma2, RHO1, PKC receptor, DHHC, PepcK, calreticulin, calpain, Smeg, 14.3.3, K5, SPO1, SmZF1, fibrillarin, GST28, GPx, TPx1, TPx2 and TPx2/TPx1), 12 were assessed for the transcript levels. Of those, 6 genes exhibited consistent reductions in steady-state transcript levels, while expression level for the rest remained unchanged. Results demonstrate that the efficacy of dsRNA-treatment in producing consistent phenotypic changes and/or altered gene expression levels in S. mansoni sporocysts is highly dependent on the selected gene (or the specific dsRNA sequence used) and the timing of evaluation after treatment. Although RNAi holds great promise as a functional genomics tool for larval schistosomes, our finding of potential off-target or nonspecific effects of some dsRNA treatments and variable efficiencies in specific gene knockdown indicate a critical need for gene-specific testing and optimization as an essential part of experimental design, execution and data interpretation

    Epigenetic Activation of a Subset of mRNAs by eIF4E Explains Its Effects on Cell Proliferation

    Get PDF
    BACKGROUND: Translation deregulation is an important mechanism that causes aberrant cell growth, proliferation and survival. eIF4E, the mRNA 5β€² cap-binding protein, plays a major role in translational control. To understand how eIF4E affects cell proliferation and survival, we studied mRNA targets that are translationally responsive to eIF4E. METHODOLOGY/PRINCIPAL FINDINGS: Microarray analysis of polysomal mRNA from an eIF4E-inducible NIH 3T3 cell line was performed. Inducible expression of eIF4E resulted in increased translation of defined sets of mRNAs. Many of the mRNAs are novel targets, including those that encode large- and small-subunit ribosomal proteins and cell growth-related factors. In addition, there was augmented translation of mRNAs encoding anti-apoptotic proteins, which conferred resistance to endoplasmic reticulum-mediated apoptosis. CONCLUSIONS/SIGNIFICANCE: Our results shed new light on the mechanisms by which eIF4E prevents apoptosis and transforms cells. Downregulation of eIF4E and its downstream targets is a potential therapeutic option for the development of novel anti-cancer drugs

    Current concepts and future of noninvasive procedures for diagnosing oral squamous cell carcinoma - a systematic review

    Get PDF
    • …
    corecore