259 research outputs found
Surface and Temporal Biosignatures
Recent discoveries of potentially habitable exoplanets have ignited the
prospect of spectroscopic investigations of exoplanet surfaces and atmospheres
for signs of life. This chapter provides an overview of potential surface and
temporal exoplanet biosignatures, reviewing Earth analogues and proposed
applications based on observations and models. The vegetation red-edge (VRE)
remains the most well-studied surface biosignature. Extensions of the VRE,
spectral "edges" produced in part by photosynthetic or nonphotosynthetic
pigments, may likewise present potential evidence of life. Polarization
signatures have the capacity to discriminate between biotic and abiotic "edge"
features in the face of false positives from band-gap generating material.
Temporal biosignatures -- modulations in measurable quantities such as gas
abundances (e.g., CO2), surface features, or emission of light (e.g.,
fluorescence, bioluminescence) that can be directly linked to the actions of a
biosphere -- are in general less well studied than surface or gaseous
biosignatures. However, remote observations of Earth's biosphere nonetheless
provide proofs of concept for these techniques and are reviewed here. Surface
and temporal biosignatures provide complementary information to gaseous
biosignatures, and while likely more challenging to observe, would contribute
information inaccessible from study of the time-averaged atmospheric
composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets.
Fixed figure conversion error
An fMRI Investigation of Preparatory Set in the Human Cerebral Cortex and Superior Colliculus for Pro- and Anti-Saccades
Previous studies have identified several cortical regions that show larger BOLD responses during preparation and execution of anti-saccades than pro-saccades. We confirmed this finding with a greater BOLD response for anti-saccades than pro-saccades during the preparation phase in the FEF, IPS and DLPFC and in the FEF and IPS in the execution phase. We then applied multi-voxel pattern analysis (MVPA) to establish whether different neural populations are involved in the two types of saccade. Pro-saccades and anti-saccades were reliably decoded during saccade execution in all three cortical regions (FEF, DLPFC and IPS) and in IPS during saccade preparation. This indicates neural specialization, for programming the desired response depending on the task rule, in these regions. In a further study tailored for imaging the superior colliculus in the midbrain a similar magnitude BOLD response was observed for pro-saccades and anti-saccades and the two saccade types could not be decoded with MVPA. This was the case both for activity related to the preparation phase and also for that elicited during the execution phase. We conclude that separate cortical neural populations are involved in the task-specific programming of a saccade while in contrast, the SC has a role in response preparation but may be less involved in high-level, task-specific aspects of the control of saccades
Auditory Spatial Acuity Approximates the Resolving Power of Space-Specific Neurons
The relationship between neuronal acuity and behavioral performance was assessed in the barn owl (Tyto alba), a nocturnal raptor renowned for its ability to localize sounds and for the topographic representation of auditory space found in the midbrain. We measured discrimination of sound-source separation using a newly developed procedure involving the habituation and recovery of the pupillary dilation response. The smallest discriminable change of source location was found to be about two times finer in azimuth than in elevation. Recordings from neurons in its midbrain space map revealed that their spatial tuning, like the spatial discrimination behavior, was also better in azimuth than in elevation by a factor of about two. Because the PDR behavioral assay is mediated by the same circuitry whether discrimination is assessed in azimuth or in elevation, this difference in vertical and horizontal acuity is likely to reflect a true difference in sensory resolution, without additional confounding effects of differences in motor performance in the two dimensions. Our results, therefore, are consistent with the hypothesis that the acuity of the midbrain space map determines auditory spatial discrimination
Ethnic-Racial Socialization in Early Childhood: The Implications of Color-Consciousness and Colorblindness for Prejudice Development
This chapter outlines how early childhood teachers can bring children into conversations surrounding race and racism by drawing on literature on how parents of color discuss these topics. Although educators’ practices surrounding race and racism remain largely unexplored, decades of developmental psychological research indicate that parents of color engage in ethnic-racial socialization practices that are beneficial for children (Hughes et al., 2006). The established dimensions of parental ethnic-racial socialization include (1) cultural socialization, or teaching children about their ethnic heritage and instilling ethnic pride; (2) preparation for bias, or teaching children about racism and preparing them to face discrimination; (3) promotion of mistrust, or warning children about the need to distance themselves from other racial groups; and (4) egalitarianism, or emphasizing the similarities between and equality of all races (Hughes et al. 2006). One consideration to take into account from a developmental perspective is that children’s level of cognitive development impacts how they interpret messages about race. This chapter draws a link between parental ethnic-racial socialization and extends this body of work to school settings, with a focus on teachers. The ideologies of colorblindness and color-consciousness are discussed throughout
ApoB100/LDLR-/- Hypercholesterolaemic Mice as a Model for Mild Cognitive Impairment and Neuronal Damage
Recent clinical findings support the notion that the progressive deterioration of cholesterol homeostasis is a central player in Alzheimer's disease (AD). Epidemiological studies suggest that high midlife plasma total cholesterol levels are associated with an increased risk of AD. This paper reports the plasma cholesterol concentrations, cognitive performance, locomotor activity and neuropathological signs in a murine model (transgenic mice expressing apoB100 but knockout for the LDL receptor [LDLR]) of human familial hypercholesterolaemia (FH). From birth, these animals have markedly elevated LDL-cholesterol and apolipoprotein B100 (apoB100) levels. These transgenic mice were confirmed to have higher plasma cholesterol concentrations than wild-type mice, an effect potentiated by aging. Further, 3-month-old transgenic mice showed cholesterol (total and fractions) concentrations considerably higher than those of 18-month-old wild-type mice. The hypercholesterolaemia of the transgenic mice was associated with a clear locomotor deficit (as determined by rotarod, grip strength and open field testing) and impairment of the episodic-like memory (determined by the integrated memory test). This decline in locomotor activity and cognitive status was associated with neuritic dystrophy and/or the disorganization of the neuronal microtubule network, plus an increase in astrogliosis and lipid peroxidation in the brain regions associated with AD, such as the motor and lateral entorhinal cortex, the amygdaloid basal nucleus, and the hippocampus. Aortic atherosclerotic lesions were positively correlated with age, although potentiated by the transgenic genotype, while cerebral β-amyloidosis was positively correlated with genetic background rather than with age. These findings confirm hypercholesterolaemia as a key biomarker for monitoring mild cognitive impairment, and shows these transgenic mice can be used as a model for cognitive and psycho-motor decline
Tuning hardness in calcite by incorporation of amino acids
Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure–property relationships of even the simplest building unit—mineral single crystals containing embedded macromolecules—remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0–7 mol%) or aspartic acid (0–4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules
Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour
Dome-forming volcanoes are among the most hazardous volcanoes on Earth. Magmatic outgassing can be hindered if the permeability of a lava dome is reduced, promoting pore pressure augmentation and explosive behaviour. Laboratory data show that acid-sulphate alteration, common to volcanoes worldwide, can reduce the permeability on the sample lengthscale by up to four orders of magnitude and is the result of pore- and microfracture-filling mineral precipitation. Calculations using these data demonstrate that intense alteration can reduce the equivalent permeability of a dome by two orders of magnitude, which we show using numerical modelling to be sufficient to increase pore pressure. The fragmentation criterion shows that the predicted pore pressure increase is capable of fragmenting the majority of dome-forming materials, thus promoting explosive volcanism. It is crucial that hydrothermal alteration, which develops over months to years, is monitored at dome-forming volcanoes and is incorporated into real-time hazard assessments
MLSys: The New Frontier of Machine Learning Systems
Machine learning (ML) techniques are enjoying rapidly increasing adoption. However, designing and implementing the systems that support ML models in real-world deployments remains a significant obstacle, in large part due to the radically different development and deployment profile of modern ML methods, and the range of practical concerns that come with broader adoption. We propose to foster a new systems machine learning research community at the intersection of the traditional systems and ML communities, focused on topics such as hardware systems for ML, software systems for ML, and ML optimized for metrics beyond predictive accuracy. To do this, we describe a new conference, MLSys, that explicitly targets research at the intersection of systems and machine learning with a program committee split evenly between experts in systems and ML, and an explicit focus on topics at the intersection of the two
A Functional and Structural Investigation of the Human Fronto-Basal Volitional Saccade Network
Almost all cortical areas are connected to the subcortical basal ganglia (BG) through parallel recurrent inhibitory and excitatory loops, exerting volitional control over automatic behavior. As this model is largely based on non-human primate research, we used high resolution functional MRI and diffusion tensor imaging (DTI) to investigate the functional and structural organization of the human (pre)frontal cortico-basal network controlling eye movements. Participants performed saccades in darkness, pro- and antisaccades and observed stimuli during fixation. We observed several bilateral functional subdivisions along the precentral sulcus around the human frontal eye fields (FEF): a medial and lateral zone activating for saccades in darkness, a more fronto-medial zone preferentially active for ipsilateral antisaccades, and a large anterior strip along the precentral sulcus activating for visual stimulus presentation during fixation. The supplementary eye fields (SEF) were identified along the medial wall containing all aforementioned functions. In the striatum, the BG area receiving almost all cortical input, all saccade related activation was observed in the putamen, previously considered a skeletomotor striatal subdivision. Activation elicited by the cue instructing pro or antisaccade trials was clearest in the medial FEF and right putamen. DTI fiber tracking revealed that the subdivisions of the human FEF complex are mainly connected to the putamen, in agreement with the fMRI findings. The present findings demonstrate that the human FEF has functional subdivisions somewhat comparable to non-human primates. However, the connections to and activation in the human striatum preferentially involve the putamen, not the caudate nucleus as is reported for monkeys. This could imply that fronto-striatal projections for the oculomotor system are fundamentally different between humans and monkeys. Alternatively, there could be a bias in published reports of monkey studies favoring the caudate nucleus over the putamen in the search for oculomotor functions
- …