625 research outputs found

    Depth-Sensing Indentation on REBa2Cu3O(7-\delta) Single Crystals obtained from Xenotime Mineral

    Full text link
    A natural mixture of heavy rare earths oxides extracted from xenotime mineral have been used to prepare large single crystals of high-temperature REBa2Cu3O(7-\delta) superconductor grown using the CuO-BaO self-flux method. Its mechanical properties along the ab-plane were characterized using instrumented indentation. Hardness and elastic modulus were obtained by the Oliver and Pharr method and corresponds to 7.4 \pm 0.2 GPa and in range 135-175 GPa at small depths, respectively. Increasing the load promotes the nucleation of lateral cracks that causes a decrease in hardness and the measured elastic modulus by instrumented indentation at higher loads. The indentation fracture toughness was estimated by measuring the radial crack length from cube-corner indentations at various loads and was 0.8 \pm 0.2 MPa.m1/2. The observed slip systems of REBa2Cu3O(7-\delta) single crystals were [100](001) and [010](001), the same as for YBa2Cu3O(7-\delta) single crystals. The initial stages of deformation and fracture in the indentation process were investigated. The hardness and elastic modulus were not strongly modified by the crystallographic orientation in the ab-plane. This was interpreted in terms of the resolved shear stresses in the active slip systems. Evidence of cracking along the {100} and {110} planes on the ab-plane was observed. As a conclusion, the mechanical properties of REBa2Cu3O(7-\delta) single crystals prepared from xenotime are equivalent to those of YBa2Cu3O(7-\delta) single crystals produced by conventional rare earths oxides.Comment: The paper will appear in Volume 42 (2012) of the Brazilian Journal of Physic

    Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns

    Get PDF
    Self-assembled DNA nanostructures enable nanometre-precise patterning that can be used to create programmable molecular machines and arrays of functional materials. DNA origami is particularly versatile in this context because each DNA strand in the origami nanostructure occupies a unique position and can serve as a uniquely addressable pixel. However, the scale of such structures has been limited to about 0.05 square micrometres, hindering applications that demand a larger layout and integration with more conventional patterning methods. Hierarchical multistage assembly of simple sets of tiles can in principle overcome this limitation, but so far has not been sufficiently robust to enable successful implementation of larger structures using DNA origami tiles. Here we show that by using simple local assembly rules that are modified and applied recursively throughout a hierarchical, multistage assembly process, a small and constant set of unique DNA strands can be used to create DNA origami arrays of increasing size and with arbitrary patterns. We illustrate this method, which we term ‘fractal assembly’, by producing DNA origami arrays with sizes of up to 0.5 square micrometres and with up to 8,704 pixels, allowing us to render images such as the Mona Lisa and a rooster. We find that self-assembly of the tiles into arrays is unaffected by changes in surface patterns on the tiles, and that the yield of the fractal assembly process corresponds to about 0.95^(m − 1) for arrays containing m tiles. When used in conjunction with a software tool that we developed that converts an arbitrary pattern into DNA sequences and experimental protocols, our assembly method is readily accessible and will facilitate the construction of sophisticated materials and devices with sizes similar to that of a bacterium using DNA nanostructures

    Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons

    Get PDF
    During corticogenesis, pyramidal neurons (~80% of cortical neurons) arise from the ventricular zone, pass through a multipolar stage to become bipolar and attach to radial glia[superscript 1, 2], and then migrate to their proper position within the cortex[superscript 1, 3]. As pyramidal neurons migrate radially, they remain attached to their glial substrate as they pass through the subventricular and intermediate zones, regions rich in tangentially migrating interneurons and axon fibre tracts. We examined the role of lamellipodin (Lpd), a homologue of a key regulator of neuronal migration and polarization in Caenorhabditis elegans, in corticogenesis. Lpd depletion caused bipolar pyramidal neurons to adopt a tangential, rather than radial-glial, migration mode without affecting cell fate. Mechanistically, Lpd depletion reduced the activity of SRF, a transcription factor regulated by changes in the ratio of polymerized to unpolymerized actin. Therefore, Lpd depletion exposes a role for SRF in directing pyramidal neurons to select a radial migration pathway along glia rather than a tangential migration mode.Ruth L. Kirschstein National Research Service Award (grant F32- GM074507)National Institutes of Health (U.S.) (grant # GM068678

    Intergenic and Genic Sequence Lengths Have Opposite Relationships with Respect to Gene Expression

    Get PDF
    Eukaryotic genomes are mostly composed of noncoding DNA whose role is still poorly understood. Studies in several organisms have shown correlations between the length of the intergenic and genic sequences of a gene and the expression of its corresponding mRNA transcript. Some studies have found a positive relationship between intergenic sequence length and expression diversity between tissues, and concluded that genes under greater regulatory control require more regulatory information in their intergenic sequences. Other reports found a negative relationship between expression level and gene length and the interpretation was that there is selection pressure for highly expressed genes to remain small. However, a correlation between gene sequence length and expression diversity, opposite to that observed for intergenic sequences, has also been reported, and to date there is no testable explanation for this observation. To shed light on these varied and sometimes conflicting results, we performed a thorough study of the relationships between sequence length and gene expression using cell-type (tissue) specific microarray data in Arabidopsis thaliana. We measured median gene expression across tissues (expression level), expression variability between tissues (expression pattern uniformity), and expression variability between replicates (expression noise). We found that intergenic (upstream and downstream) and genic (coding and noncoding) sequences have generally opposite relationships with respect to expression, whether it is tissue variability, median, or expression noise. To explain these results we propose a model, in which the lengths of the intergenic and genic sequences have opposite effects on the ability of the transcribed region of the gene to be epigenetically regulated for differential expression. These findings could shed light on the role and influence of noncoding sequences on gene expression

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Increased tumour dihydroceramide production after Photofrin-PDT alone and improved tumour response after the combination with the ceramide analogue LCL29. Evidence from mouse squamous cell carcinomas

    Get PDF
    Photodynamic therapy (PDT) has been proven effective for treatment of several types of cancer. Photodynamic therapy alone, however, attains limited cures with some tumours and there is need for its improved efficacy in such cases. Sphingolipid (SL) analogues can promote tumour response in combination with anticancer drugs. In this study, we used mouse SCCVII squamous cell carcinoma tumours to determine the impact of Photofrin-PDT on the in vivo SL profile and the effect of LCL29, a C6-pyridinium ceramide, on PDT tumour response. Following PDT, the levels of dihydroceramides (DHceramides), in particular C20-DHceramide, were elevated in tumours. Similarly, increases in DHceramides, in addition to C20:1-ceramide, were found in PDT-treated SCCVII cells. These findings indicate the importance of the de novo ceramide pathway in Photofrin-PDT response not only in cells but also in vivo. Notably, co-exposure of SCCVII tumours to Photofrin-PDT and LCL29 led to enhanced tumour response compared with PDT alone. Thus, we show for the first time that Photofrin-PDT has a distinct signature effect on the SL profile in vitro and in vivo, and that the combined treatment advances PDT therapeutic gain, implying translational significance of the combination

    Influence of Ecto-Nucleoside Triphosphate Diphosphohydrolase Activity on Trypanosoma cruzi Infectivity and Virulence

    Get PDF
    The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, an endemic zoonosis present in some countries of South and Central Americas. The World Health Organization estimates that 100 million people are at risk of acquiring this disease. The infection affects mainly muscle tissues in the heart and digestive tract. There are no vaccines or effective treatment, especially in the chronic phase when most patients are diagnosed, which makes a strong case for the development of new drugs to treat the disease. In this work we evaluate a family of proteins called Ecto-Nucleoside-Triphosphate-Diphosphohydrolase (Ecto-NTPDase) as new chemotherapy target to block T. cruzi infection in mammalian cells and in mice. We have used inhibitors and antibodies against this protein and demonstrated that T. cruzi Ecto-NTPDases act as facilitators of infection in mammalian cells and virulence factors in mice model. Two of the drugs used in this study (Suramin and Gadolinium) are currently used for other diseases in humans, supporting the possibility of their use in the treatment of Chagas disease
    • …
    corecore