93 research outputs found
Accuracy of Eulerian–Eulerian, two-fluid CFD boiling models of subcooled boiling flows
Boiling flows are frequently found in industry and engineering due to the large amount of heat that can be transferred within such flows with minimum temperature differences. In the nuclear industry, boiling affects in different ways the operation of almost all water-cooled nuclear reactors. Recently, the use of computational fluid dynamic (CFD) approaches to predict boiling flows is increasing and, in the nuclear area, CFD is being developed to solve thermal hydraulic safety issues such as establishing the critical heat flux, which is perhaps the major threat to the integrity of nuclear fuel rods. In this paper, the accuracy of an Eulerian–Eulerian, two-fluid CFD model is evaluated over a large database of subcooled boiling flows, avoiding the rather popular case-by-case tuning of descriptive models to a limited number of experiments. The model includes a Reynolds stress turbulence model, the method of moments-based S-gamma population balance approach and a boiling model derived using the heat flux partitioning approach. The database covers a large range of conditions in subcooled boiling flows of water and refrigerants in vertical pipes and annular channels. Overall, a satisfactory predictive accuracy is achieved for some quantities of interest, such as the void fraction and the turbulence and liquid temperature fields, but results are less satisfactory in other areas, more specifically for the average bubble diameter and the mean velocity profiles close to the wall in annular channels. Agreement may be improved with advances in the treatment of large bubbles and bubble break-up and coalescence, as well as in improved modelling of the boiling region close to the wall, and more specifically the bubble departure diameter, the wall treatment and the contribution of bubbles to turbulence
Microsatellite discovery in an insular amphibian (Grandisonia alternans) with comments on cross-species utility and the accuracy of locus identification from unassembled Illumina data
The Seychelles archipelago is unique among isolated oceanic islands because it features an endemic radiation of caecilian amphibians (Gymnophiona). In order to develop population genetics resources for this system, we identified microsatellite loci using unassembled Illumina MiSeq data generated from a genomic library of Grandisonia alternans, a species that occurs on multiple islands in the archipelago. Applying a recently described method (PALFINDER) we identified 8001 microsatellite loci that were potentially informative for population genetics analyses. Of these markers, we screened 60 loci using five individuals, directly sequenced several amplicons to confirm their identity, and then used eight loci to score allele sizes in 64 G. alternans individuals originating from five islands. A number of these individuals were sampled using non-lethal methods, demonstrating the efficacy of non-destructive molecular sampling in amphibian research. Although two loci satisfied our criteria as diploid, neutrally evolving loci with the statistical power to detect population structure, our success in identifying reliable loci was very low. Additionally, we discovered some issues with primer redundancy and differences between Illumina and Sanger sequences that suggest some Illumina-inferred loci are invalid. We investigated cross-species utility for eight loci and found most could be successfully amplified, sequenced and aligned across other species and genera of caecilians from the Seychelles. Thus, our study in part supported the validity of using PALFINDER with unassembled reads for microsatellite discovery within and across species, but importantly identified major limitations to applying this approach to small datasets (ca. 1 million reads) and loci with small tandem repeat sizes
Molecular preservation by extraction and fixation, mPREF: a method for small molecule biomarker analysis and histology on exactly the same tissue
<p>Abstract</p> <p>Background</p> <p>Histopathology is the standard method for cancer diagnosis and grading to assess aggressiveness in clinical biopsies. Molecular biomarkers have also been described that are associated with cancer aggressiveness, however, the portion of tissue analyzed is often processed in a manner that is destructive to the tissue. We present here a new method for performing analysis of small molecule biomarkers and histology in exactly the same biopsy tissue.</p> <p>Methods</p> <p>Prostate needle biopsies were taken from surgical prostatectomy specimens and first fixed, each in a separate vial, in 2.5 ml of 80% methanol:water. The biopsies were fixed for 24 hrs at room temperature and then removed and post-processed using a non-formalin-based fixative (UMFIX), embedded, and analyzed by hematoxylin and eosin (H&E) and by immunohistochemical (IHC) staining. The retained alcohol pre-fixative was analyzed for small molecule biomarkers by mass spectrometry.</p> <p>Results</p> <p>H&E analysis was successful following the pre-fixation in 80% methanol. The presence or absence of tumor could be readily determined for all 96 biopsies analyzed. A subset of biopsy sections was analyzed by IHC, and cancerous and non-cancerous regions could be readily visualized by PIN4 staining. To demonstrate the suitability for analysis of small molecule biomarkers, 28 of the alcohol extracts were analyzed using a mass spectrometry-based metabolomics platform. All extracts tested yielded successful metabolite profiles. 260 named biochemical compounds were detected in the alcohol extracts. A comparison of the relative levels of compounds in cancer containing <it>vs</it>. non-cancer containing biopsies showed differences for 83 of the compounds. A comparison of the results with prior published reports showed good agreement between the current method and prior reported biomarker discovery methods that involve tissue destructive methods.</p> <p>Conclusions</p> <p>The Molecular Preservation by Extraction and Fixation (mPREF) method allows for the analysis of small molecule biomarkers from exactly the same tissue that is processed for histopathology.</p
Observations on comatose survivors of cardiopulmonary resuscitation with generalized myoclonus
BACKGROUND: There is only limited data on improvements of critical medical care is resulting in a better outcome of comatose survivors of cardiopulmonary resuscitation (CPR) with generalized myoclonus. There is also a paucity of data on the temporal dynamics of electroenephalographic (EEG) abnormalities in these patients. METHODS: Serial EEG examinations were done in 50 comatose survivors of CPR with generalized myoclonus seen over an 8 years period. RESULTS: Generalized myoclonus occurred within 24 hours after CPR. It was associated with burst-suppression EEG (n = 42), continuous generalized epileptiform discharges (n = 5), alpha-coma-EEG (n = 52), and low amplitude (10 μV <) recording (n = 1). Except in 3 patients, these EEG-patterns were followed by another of these always nonreactive patterns within one day, mainly alpha-coma-EEG (n = 10) and continuous generalized epileptiform discharges (n = 9). Serial recordings disclosed a variety of EEG-sequences composed of these EEG-patterns, finally leading to isoelectric or flat recordings. Forty-five patients died within 2 weeks, 5 patients survived and remained in a permanent vegetative state. CONCLUSION: Generalized myoclonus in comatose survivors of CPR still implies a poor outcome despite advances in critical care medicine. Anticonvulsive drugs are usually ineffective. All postanoxic EEG-patterns are transient and followed by a variety of EEG sequences composed of different EEG patterns, each of which is recognized as an unfavourable sign. Different EEG-patterns in anoxic encephalopathy may reflect different forms of neocortical dysfunction, which occur at different stages of a dynamic process finally leading to severe neuronal loss
Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei
As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme
Experimental ‘Jet Lag’ Inhibits Adult Neurogenesis and Produces Long-Term Cognitive Deficits in Female Hamsters
Background: Circadian disruptions through frequent transmeridian travel, rotating shift work, and poor sleep hygiene are associated with an array of physical and mental health maladies, including marked deficits in human cognitive function. Despite anecdotal and correlational reports suggesting a negative impact of circadian disruptions on brain function, this possibility has not been experimentally examined. Methodology/Principal Findings: In the present study, we investigated whether experimental ‘jet lag ’ (i.e., phase advances of the light:dark cycle) negatively impacts learning and memory and whether any deficits observed are associated with reductions in hippocampal cell proliferation and neurogenesis. Because insults to circadian timing alter circulating glucocorticoid and sex steroid concentrations, both of which influence neurogenesis and learning/memory, we assessed the contribution of these endocrine factors to any observed alterations. Circadian disruption resulted in pronounced deficits in learning and memory paralleled by marked reductions in hippocampal cell proliferation and neurogenesis. Significantly, deficits in hippocampal-dependent learning and memory were not only seen during the period of the circadian disruption, but also persisted well after the cessation of jet lag, suggesting long-lasting negative consequences on brain function. Conclusions/Significance: Together, these findings support the view that circadian disruptions suppress hippocampal neurogenesis via a glucocorticoid-independent mechanism, imposing pronounced and persistent impairments on learnin
Interaction between Purkinje Cells and Inhibitory Interneurons May Create Adjustable Output Waveforms to Generate Timed Cerebellar Output
We develop a new model that explains how the cerebellum may generate the timing in classical delay eyeblink conditioning. Recent studies show that both Purkinje cells (PCs) and inhibitory interneurons (INs) have parallel signal processing streams with two time scales: an AMPA receptor-mediated fast process and a metabotropic glutamate receptor (mGluR)-mediated slow process. Moreover, one consistent finding is an increased excitability of PC dendrites (in Larsell's lobule HVI) in animals when they acquire the classical delay eyeblink conditioning naturally, in contrast to in vitro studies, where learning involves long-term depression (LTD). Our model proposes that the delayed response comes from the slow dynamics of mGluR-mediated IP3 activation, and the ensuing calcium concentration change, and not from LTP/LTD. The conditioned stimulus (tone), arriving on the parallel fibers, triggers this slow activation in INs and PC spines. These excitatory (from PC spines) and inhibitory (from INs) signals then interact at the PC dendrites to generate variable waveforms of PC activation. When the unconditioned stimulus (puff), arriving on the climbing fibers, is coupled frequently with this slow activation the waveform is amplified (due to an increased excitability) and leads to a timed pause in the PC population. The disinhibition of deep cerebellar nuclei by this timed pause causes the delayed conditioned response. This suggested PC-IN interaction emphasizes a richer role of the INs in learning and also conforms to the recent evidence that mGluR in the cerebellar cortex may participate in slow motor execution. We show that the suggested mechanism can endow the cerebellar cortex with the versatility to learn almost any temporal pattern, in addition to those that arise in classical conditioning
A Phase II study of celecoxib, gemcitabine, and cisplatin in advanced pancreatic cancer
Background . Pancreatic cancer is amongst the most chemoresistant malignancies. Expression of the cyclooxygenase-2 (COX-2) enzyme plays a major role in tumor progression and resistance to therapy. A Phase II study was undertaken to determine the effect of gemcitabine by fixed-dose rate infusion (FDR), cisplatin and the COX-2 inhibitor, celecoxib, on the 6-month survival rate in patients with metastatic pancreatic cancer.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45281/1/10637_2005_Article_1028.pd
Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.
Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
- …