UNIVERSITY OF LEEDS

This is a repository copy of Accuracy of Eulerian—Eulerian, two-fluid CFD boiling models of
subcooled boiling flows.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/102976/

Version: Accepted Version

Article:

Colombo, M and Fairweather, M (2016) Accuracy of Eulerian—Eulerian, two-fluid CFD
boiling models of subcooled boiling flows. International Journal of Heat and Mass Transfer,
103. pp. 28-44. ISSN 0017-9310

https://doi.org/10.1016/j.ijjheatmasstransfer.2016.06.098

© 2016, Elsevier. Licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Accuracy of Eulerian — Eulerian, two-fluid CFD boiling
models of subcooled boiling flows

M. Colombo* and M. Fairweather
School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United
Kingdom
E-mail addresses: M.Colombo@]leeds.ac.uk, M.Fairweather@leeds.ac.uk

*Corresponding Author. Tel: +44 (0) 113 343 2351

ABSTRACT

Boiling flows are frequently found in industry and engineering due to the large amount of
heat that can be transferred within such flows with minimum temperature differences. In the
nuclear industry, boiling affects in different ways the operation of almost all water-cooled
nuclear reactors. Recently, the use of Computational fluid dynamic (CFD) approaches to
predict boiling flows is increasing and, in the nuclear area, CFD is being developed to solve
thermal hydraulic safety issues such as establishing the critical heat flux, which is perhaps the
major threat to the integrity of nuclear fuel rods. In this paper, the accuracy of an Eulerian —
Eulerian, two-fluid CFD model is evaluated over a large database of subcooled boiling flows,
avoiding the rather popular case-by-case tuning of descriptive models to a limited number of
experiments. The model includes a Reynolds stress turbulence model, the method of
moments-based S, population balance approach and a boiling model derived using the heat
flux partitioning approach. The database covers a large range of conditions in subcooled
boiling flows of water and refrigerants in vertical pipes and annular channels. Overall, a
satisfactory predictive accuracy is achieved for some quantities of interest, such as the void
fraction and the turbulence and liquid temperature fields, but results are less satisfactory in
other areas, more specifically for the average bubble diameter and the mean velocity profiles
close to the wall in annular channels. Agreement may be improved with advances in the
treatment of large bubbles and bubble break-up and coalescence, as well as in improved
modelling of the boiling region close to the wall, and more specifically the bubble departure

diameter, the wall treatment and the contribution of bubbles to turbulence.

KEYWORDS: Subcooled boiling; computational fluid dynamics; two-fluid model; heat-flux
partitioning; boiling model.



1 Introduction

In industry, boiling flows are often encountered because of the efficiency of heat transfer
mechanisms under such conditions, which allow the transfer of significant amounts of heat
with a limited amount of wall superheat, to the benefit of many engineering processes. In the
nuclear industry, different types of boiling regimes are found in all water-cooled reactors,
both in normal operation and during design-basis and beyond design-basis postulated
accident transients. Boiling water reactors operate in the saturated boiling regime, and some
degree of subcooled boiling is always experienced in pressurized water reactors during
normal operation. Buoyancy-driven natural circulation loops and safety systems are also
sometimes designed to operate within the boiling regime and, during loss of coolant accidents
for example, boiling may occur due to the decrease in pressure and the reduced coolant
inventory. For a reactor experiencing boiling conditions, the maximum amount of heat
transferrable from the nuclear fuel to the coolant is referred to as the critical heat flux (CHF)
and, when this is reached, the heat transfer deteriorates rapidly [1,2]. Recently, a significant
portion of nuclear reactor thermal hydraulic analyses make use of multiphase computational
fluid dynamic (CFD) models, and in particular of the Eulerian-Eulerian, averaged two-fluid
formulation that is invariably used when addressing industrial-scale engineering problems.
With respect to the simplistic models more commonly used in the nuclear industry, CFD may
ultimately be able to describe phenomena in much greater detail, leading to the solution of
selected nuclear reactor thermal hydraulic safety issues [3], including the prediction of CHF
which, despite being perhaps the main threat to the integrity of nuclear fuel rods and despite
long-term research efforts, has still resisted accurate modelling and understanding [4].

With the aim of predicting the boiling process, different wall boiling models have been
incorporated in modern CFD codes. For two-fluid averaged models, these approaches are in
the large majority based on the Rensselaer Polytechnic Institute (RPI) boiling model from
Kurul and Podowski [5], where the heat flux from the wall is partitioned between the
mechanisms responsible for the heat transfer process, these being single-phase convection,
quenching and evaporation. In recent years, many authors have used more or less refined
versions of the RPI boiling model to predict boiling flows [6-12]. After departure from the
heated wall, the bubbles join the bulk of the flow and the size distribution of these bubbles,
polydispersed in general, governs interphase exchanges of mass, momentum and energy.
Therefore, in models of these flows, knowledge of the average diameter of the bubbles is

required in many closure relations, and additional models have been used to predict the



average bubble diameter distribution. Initially, bubble size was derived from experimental
data or empirical correlations of subcooling in the liquid phase [5,13-16]. More recently,
bubble size distribution has been predicted by coupling different population balance
approaches to the two-fluid and the wall boiling models. Yao and Morel [6] derived source
terms for bubble coalescence, bubble break-up and phase change to be used in the volumetric
interfacial area transport equation. Yeoh and Tu [7] added wall nucleation and condensation
in the bulk flow to the multiple size group (MUSIG) model [17], which divides the bubble
diameter spectrum into a finite number of ranges to accommodate non-uniform bubble size
distributions. All these authors reported significant improvements over predictions based on
empirical correlations of subcooling of the liquid phase. More recently, Krepper et al. [10]
applied the inhomogeneous version of the MUSIG model, where each bubble size range is
allowed to have its own velocity, to the simulation of a subcooled boiling flow in a vertical
pipe. Morel and Lavieville [18] extended to boiling flows a method based on conservation of
the density S, of the moments of the bubble size distribution, which was assumed to obey to a
log-normal probability distribution. In their model, bubble break-up was not accounted for.
Bubble break-up was considered in the context of the S, model, initially proposed by Lo and
Rao [19] and Lo and Zhang [20], by Yun et al. [9], and more recently by Thakrar et al. [12],
to simulate boiling flows in a vertical pipe and in a vertical rectangular channel, respectively.
The boiling model calculates the amount of vapour generated at the wall and the
corresponding mass source is added to the near-wall computational cell. Here, in the large
majority of CFD codes, the boundary condition on the flow field is imposed using wall
functions. Wall functions for use in boiling flows have been developed by different authors
by including, in the single-phase law of the wall, an additional roughness due to the bubbles
attached at the wall [8,10,14].

Most of the boiling models have been tested against experimental measurements made in
subcooled boiling flows. The majority of these experiments were performed in circular cross-
section geometries, with water at low pressure [13] or refrigerant at moderate pressure [21-
23], because they scale to typical operating conditions found in water-cooled nuclear reactors.
At high pressure, the availability of data is more limited and the axial averaged void profiles
measured by Bartlomej and Chanturiya [24] and Bartolomej et al. [25] in upward pipe water
flows are perhaps the most extensively investigated case to date, in addition to the DEBORA
experiment [22], which, instead, focused on the boiling of refrigerant R12 at moderate
pressures. At high pressure, the measurements of Pierre and Bankoff [26] in a rectangular

channel have also received some attention [12].



In the majority of works to date, the boiling model is tested against a single experiment and,
most frequently, a good predictive accuracy is demonstrated, but generally after calibration or
tuning of some of the model parameters to the experiment under study [7,9,10,15]. Even if
built in a mechanistic fashion, all the RPI-based models available at present are actually
forced to rely on some empirical or semi-empirical closure relation, in particular for the
evaporative heat transfer contribution, which requires knowledge of the active nucleation site
density and the bubble departure diameter and frequency. The numerous empirical
correlations available for this purpose were recently reviewed by Cheung et al. [27] and
Thakrar et al. [28]. In general, poor predictive accuracy of these models has been found for
subcooled boiling data over a wide range of mass and wall heat fluxes, and inlet subcooling,
and no combination of correlations that provide a satisfactory overall accuracy has been
identified. In the context of CFD, the most used correlations have been those of Lemmert and
Chawla [29] and Hibiki and Ishii [30] for the active nucleation site density, of Tolubinsky
and Kostanchuk [31] and Kocamustafaogullari [32] for the bubble departure diameter, and of
Cole [33] for the bubble departure frequency [7,8,10,12,16]. However, attempts to assess the
accuracy of these correlations for the conditions simulated are rather scarce, and no definitive
information on the range of parameters over which any correlation is expected to provide a
satisfactory accuracy, or simply outperform other correlations, is available. In view of these
deficiencies, some authors have recently started to use more mechanistic formulations based
on a balance of the forces acting on the growing bubble to calculate the bubble departure
diameter [9,34].

In this paper, a large database of subcooled boiling flows in vertical channels examined
experimentally over a wide range of operating conditions is assembled and predicted using a
model solved using the STAR-CCM+ code. It has recently been noted [35,36] how it is
necessary, to make progress in this field, to have models that are validated against numerous
experiments, rather than on a case-by-case basis which only provides good agreement with a
single experiment. This is particularly the case in the qualification of two-phase flow CFD
codes for nuclear safety applications. In view of this, changes to any model should only be
made if they are based on sound physical considerations, and following improvements to the
overall performance of the model [35,36]. In this work, a priori selected closure models are
applied to the whole database and the global accuracy of the model is evaluated (although
some changes were necessary and will be explained throughout the text). The two-phase flow
is described using an Eulerian-Eulerian two-fluid model, with boiling at the wall accounted

for using the heat flux partitioning approach. The S, model, based on the moments of the



bubble size distribution, is used to predict the bubble diameter distribution, which governs the
interfacial area density and therefore the interphase transfer processes. A multiphase
Reynolds stress turbulence model is used, which, to the authors’ knowledge, represents a
level of closure in the context of boiling flows which has only been employed by Mimouni et
al. [37,38] to predict the two-phase flow in a fuel bundle subjected to the influence of a
mixing vane. Therefore, the impact of the use of a second-moment turbulence closure in
subcooled boiling simulations is further investigated. In view of the large database adopted,
the overall ability of multiphase CFD approaches to predict general boiling flows is
evaluated, this being a necessary step if models of this kind are to be confidently applied to
the prediction of the CHF. Areas that need further improvement are also identified and their
impact on the global accuracy of the model is tested. Amongst others, the multiphase
turbulence model and models for bubble coalescence and break-up, which are often one of

the weakest aspects in the simulation of bubbly flows [36], are identified.

2 Model description

In a two-fluid Eulerian-Eulerian model, each phase is described by a set of averaged
conservation equations, and the continuity, momentum and energy equations are solved for
each phase. These, being discussed for adiabatic two-phase boiling flows in many previous
publications [7,39,40] to which the interested reader may refer to, are not presented here. As
a consequence of the averaging procedure, details of the interphase structure are lost and
closure models are required for the mass, momentum and energy transfers at the interphase.
These, and in particular the interphase momentum exchanges, have received much attention
in recent years [41,42]. In this work, the drag model of Tomiyama et al. [43] is used, where
the drag coefficient Cp is calculated from the bubble Reynolds and E6tvos numbers, Re and

Eo:

8Eo

Cp = max [2—4 (14 0.15Re%687), —————
D Re ' "3(Eo + 4)

(1

A lift force, perpendicular to the direction of motion, is experienced by bubbles moving in a
shear flow [44] and this influences the radial void distribution in pipe and channel flows.
Spherical bubbles are pushed towards the pipe wall whereas larger bubbles, which are more
often oblate and ellipsoidal because of the inertia of the surrounding liquid, experience, after

a critical value of the bubble diameter, a change of sign in the lift force and accumulate



towards the centre of the pipe [45]. In the literature, different correlations are available for
the lift coefficient that also predict the change of sign with bubble diameter [45]. The wall
force, in contrast, tends to keep bubbles away from a solid wall, and was modelled first by
Antal et al. [46]. Lift and wall forces in adiabatic bubbly flows are fairly well established,
although some uncertainties in their effective contributions, or in the actual accuracy of the
available models, still exist [47,48]. Proof of the latter is found in the numerous different
models that authors have used, even in the recent past. The use of lift and wall forces in
boiling flows is much more uncertain and more general studies on the behaviour of bubbles
near the heated wall are necessary. In view of these uncertainties, lift and wall forces were
generally neglected. The turbulent dispersion force is modelled following Burns et al. [49],
with a turbulent dispersion coefficient Crp = 2.5 and a turbulent Prandtl number o, = 1.0

[49]:
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2.1 Multiphase turbulence modelling

Turbulence is solved in the continuous phase only, with a Reynolds stress model (RSM)
based on a multiphase formulation of the single-phase model due to Speziale, Sarkar and

Gatsky (SSG) [50, 51]:
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Here, Py is the turbulence production, the diffusion D;; is modelled accordingly to Daly and
Harlow [52] and the isotropic hypothesis is used for the turbulence energy dissipation rate g;;.
The pressure-strain correlation @, accounting for pressure fluctuations that redistribute the
turbulence kinetic energy amongst the normal Reynolds stresses, is quadratically non-linear
in the anisotropy tensor [50]. In the dispersed phase, turbulence was not resolved, but was
instead directly related to the turbulence of the continuous phase by means of a response
coefficient C;, assumed equal to unity [53,54] following experimental evidence that suggests

such a value is reached for void fractions as low as 6 % [55].



With respect to a single-phase flow, the generation of turbulence by bubbles can modify
significantly the turbulence in the continuous phase [56-58]. To account for this contribution,
bubble-induced source terms were included in the turbulence model assuming that all the
energy lost by the bubbles to drag is converted into turbulence kinetic energy inside the

bubble wakes [54, 59, 60]:
SE! = Ky FaU, @)
The corresponding turbulence energy dissipation rate source is equal to the turbulence

kinetic energy source divided by the timescale of the bubble-induced turbulence, calculated

from the velocity scale of the turbulence and the length scale of the bubbles [60]:

SBI k0.5
SBl = S_B,TLBI =10—=">52' (5)
B

The mixed timescale, used in combination with the coefficient Kz = 0.25, has been found to
provide accurate predictions over a wide range of bubbly pipe flows [61]. The need for a
bubble-induced turbulence contribution in bubbly flows has been demonstrated in many
previous studies [48,54,60]. In contrast, less established is the use of these bubble-induced
turbulence models in boiling flows and, therefore, this specific issue is further discussed in a

specific section within the Results and discussion.

2.2 The S, model

Bubbles, after departure from the heated wall, experience evaporation and condensation in
the bulk of the flow, and break-up and coalescence events that alter the bubble diameter
distribution and affect the interphase mass, momentum and energy exchanges. The bubble
diameter distribution is predicted with the S, model [19,20], where it is assumed to obey to a
pre-defined log-normal probability distribution P(dp). From this, the density of the moments
of the bubble size distribution M, may be derived:

S, =nM, =n fo A’ P(dp) d(dp) ©)



The zero™ order moment is equal to the bubble number density n, whereas S and S3 are

closely related to the interfacial area concentration and the void fraction:
*© 2 a; *© 3 6a
So=m S;=mn| dsP(dp)d(dp) =—; S3=n| dzP(dp)d(ds) =— (7)
0 0

Average diameters of different kinds of bubble are obtained by combining the moment
densities, including, from S> and S3, the Sauter-mean diameter (SMD), which is compared

against experiments later:

S;  6a

dSM=d32=5=? (8)
L

Additionally, the variance of the distribution is calculated from:

2 _ d32 53/52)
d30 N GYSEE

(€))
The two average diameters, ds32 and d3o, are equal only for a monodispersed distribution.
Since the void fraction is known from the two-fluid model, the solution of only two
additional equations for So and S is sufficient to characterize the bubble size distribution. For

each moment, a transport equation of the following type needs to be solved:

as,
at+v (S,Uy) = Spr + St + S (10)

The source terms account for the contributions of bubble break-up and coalescence, with the
last being the source due to boiling at the wall and condensation/evaporation in the bulk of

the flow:

ZSZmlv
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In this work, interactions induced by turbulence were assumed to be dominant and the only
mechanism inducing break-up and coalescence events [6,20]. The source term for bubble

break-up is expressed as:
Sor = | KophSrnP(ds)d(dp) (12)
0

where K- is the break-up rate, the reciprocal of the break-up time z»-, and 45, is the change
in Sy due to a single break-up event, which, from conservation of volume, is:

3-y

ASET = d} (Nf vo— 1) (13)

The number of daughter bubbles Ny was assumed equal to 2 [6,20,62]. The break-up

timescale follows from the frequency of the second oscillation mode of a droplet [20]:

3pd + ch d3 (14)

with k» = 0.2. Bubbles break when the Weber number is higher than a critical value Wecrir,
equal to 1.24 [6,48]:

20Wegri\*°
derie = (14 C) (T =) e72/5 (1)

c

Cu, equal to 4.6, is a correction factor that accounts for nearby bubbles that disrupt the
influence of the surrounding inertial forces. The general source term for bubble coalescence

1S:

Ser = j ] K@ AS 9 m?P(d)d(d")P(d)d(d) (16)
0 0

Sd,d’

Here, K& is the coalescence rate between two bubbles with diameters d and ¢, and A v.cl

is the change in S, due to a single coalescence event. Following [20], and to avoid excessive



computational cost, it is assumed, in the coalescence source term, that the bubble diameter
has a uniform distribution with an equivalent mean diameter, taken equal to the SMD.

Therefore, the change in S, due to a single coalescence event becomes:

ASyg = diy (273 = 2) (17)

From Yao and Morel [6], the number of coalescence events per unit volume and unit time is

expressed as:

Kt — g, £ - (-&"¢hwe,,.,)
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The first part of Eq. (18) represents the collision rate between the bubbles, whilst the
exponential function describes the probability of coalescence following a collision event.
The function g(a) accounts for the effect of the packing of the bubbles when the void fraction
is higher than a certain value. From [6], C; =2.86, C>=1.922, C3=1.017 and Wecit = 1.24.

2.3 Boiling model

When boiling occurs at a heated wall, different heat transfer mechanisms take place and
these need to be modelled. In regions of the wall where no bubbles are growing, the heat is
transferred to the liquid by single-phase convection. Otherwise, the heat is removed by the
evaporation process and supports the growth of bubbles at the nucleation sites. Bubbles grow
attached to the wall until, when certain conditions are reached, detachment occurs.
Detachment of bubbles promotes additional mixing in the fluid phase and the recirculation of
subcooled liquid which is brought into contact with the wall to fill the volume which was
previously occupied by the detaching bubble. This mechanism accounts for a portion of the
heat transferred from the wall, and is known as quenching. Finally, when a significant
amount of vapour is present at the wall, liquid access to the wall may be restricted and a
portion of the heat is transferred by convection to the vapour phase. Therefore, and following
the RPI model of Kurul and Podowski [5], the total heat transferred from the wall is

partitioned between these heat transfer mechanisms:

Qw = (Ql + Qq + Qev)(l - Kdry) + Kdrva (19)



Kary 1s the fraction of the wall in contact with the vapour which becomes larger than zero
when the void fraction is higher than a critical value, assumed equal to 0.9 [51]. The single-

phase convective volumetric heat flux to the liquid phase is obtained from:

p.C pl 7,1

Q=0-4)—F— T, -T) (20)

l

Ap is the fraction of the wall influenced by the evaporation process and 7 a dimensionless
temperature, which is calculated using the wall function approach [51]. In the same way, the

convective volumetric heat flux to the vapour phase is known from:

Py Cp,vur,u

Qv = Tv+ (TW - Tv) (1)

The quenching volumetric heat flux, which accounts for the additional heat transfer to the

cooler liquid that replaces a bubble detaching from the wall, is given by:
Qq = hq (TW - Tl) (22)

The quenching heat transfer coefficient is modelled accordingly to Del Valle and Kenning

[63]:

Cpihit
hy = 24,f pln# (23)

In the previous equation, #w is the waiting time between the bubble departure and the

nucleation of the next bubble:
ty = — (24)

In Eq. (22), and to avoid any dependency on the computational grid employed, the liquid

temperature is evaluated at a constant y* of 250.



The evaporative volumetric heat flux is known from the number of bubbles that grow
attached to the heated wall at the active nucleation sites. These bubbles grow until the forces
that promote detachment overcome those that keep the bubble attached to the wall. Therefore,
the evaporative heat flux is known from the number of active nucleation sites, the diameter of

the bubbles at departure and the frequency of the bubble departure from the wall:

md3\ .
Qe ='f <T> Puiy (25)
In Eq. (25), closure relations are required for the nucleation site density, the bubble departure
diameter and the bubble departure frequency. Most often, these have been obtained from
empirical correlations. Only recently have more mechanistic formulations been introduced to
calculate the bubble departure diameter [9,34]. In this work, two correlations for both the
nucleation site density and for the bubble departure diameter are considered. Lemmert and

Chawla [29] proposed correlating the nucleation site number density to the wall superheat:
n' =ny(Ty — Tsar)? (26)

with 7o = 12366.45 m?K"! and p = 1.805. More recently, it has become evident that, to have a
model with a wide applicability, correlation to other parameters has to be taken into account,
including properties of the heated surface such as the contact angle [30]. The more recent

model from Hibiki and Ishii [30] is given by:

2 I
n' =n, [1 —exp <— %)] [exp <f’ ;—C> - 1] (27)

where no = 4.72 x 10° m?, u’ = 0.722 rad and 2’ = 2.50 x 10 m. @ is the contact angle, / a
function of p™ = log (Ap / pv) and R is equal to:

20[1+ py/pil/p

R, = -
‘ exp[llu(Tv - Tsat)/RgTstat] -1

(28)

Tolubinsky and Kostanchuk [31] correlated the bubble departure diameter to the liquid

subcooling:



dy, = doexp[—(Tsqr — T;) /AT, ] (29)

Here, do = 0.0006 m and ATy = 45 K. Kocamustafaogullari [32] developed a model for the
bubble departure diameter based on a balance between gravity and surface tension forces.
The model, with the addition of the dependency on a density ratio, was developed to account

for the effect of the system pressure:

o \%5 /Ap\®?
— 30

where d; = 1.5126 x 10 m rad™! and 6 = 0.722 rad for water systems. The bubble departure

frequency is calculated from Cole [33]:

_ f4g(pl—pv)
f= 3 dup (31

The fraction of the wall affected by the evaporation process is known from [5]:

dZ
Ay = 2.0%# (32)

Finally, in the bulk of the fluid, the liquid side heat transfer coefficient at the interphase is

calculated using the Ranz and Marshall [64] correlation:
A
h = d=(2 + 0.6Re'/2Pr1/3) (33)
B

The overall model, implemented in the STAR-CCM+ CFD code [51], is solved in a two-
dimensional axisymmetric geometry. At the inlet, fully-developed single-phase liquid
velocity, turbulence and temperature are imposed, together with an imposed pressure at the
outlet and the no-slip condition, and an imposed heat flux, at the wall. Strict convergence of
residuals was ensured, together with a mass balance error always lower than 0.01 % for both

phases. A mesh sensitivity study demonstrated that grid-independent solutions were achieved



with an equidistant structured mesh with the first grid point placed at a minimum wall

distance of y* = 30, which is the lower limit for the use of wall functions.

3 Experimental data

Confidence in the predictions of CFD codes relies on extensive validation of their results
against relevant experimental data. In this regard, it is important that models provide accurate
predictions over many experiments, with parameter variations as wide as possible. Therefore,
a database was built from 20 experiments from 5 different sources: Bartlomej and Chanturiya
[24], Bartolomej et al. [25], Roy et al. [21], the DEBORA experiment [22] and Lee et al.
[13]. The database, which is summarized in Table 1, includes measurements in vertical pipes
and annular channels of subcooled boiling flows of water, Freon-12 and refrigerant R-113,
and covers the ranges 0.101 — 6.89 MPa for the pressure, 477 — 2981 kg ms™! for the mass
flux, 58.2 — 1200 kW m™ for the heat flux and 11.5 — 63 °C for the inlet subcooling.

The DEBORA [22] flow loop consisted of a 19.2 mm inner diameter vertical pipe, heated for
a length of 3.5 m and operated with Freon-12 (R-12). Given the inherent difficulties of
measuring the flow boiling of water at high pressure, and temperature, Freon-12 guaranteed
more favourable experimental conditions, while maintaining values of dimensionless groups
such as the Reynolds and the Weber number, and the density ratio, consistent with typical
operating conditions of pressurized water reactors. Measurements were taken in the ranges
1.46 — 3.01 MPa for the pressure, 1000 — 3000 kg m™s™! for the mass flux and 58 — 135 kW
m™ for the heat flux, and a significant range of liquid subcooling. Void fraction and vapour
velocity profiles at the end of the test section were measured with an optical probe technique,
from which radial profiles of the interfacial area concentration and the SMD were
determined. Thermocouples were used to measure the liquid temperature radial profile and
the wall temperature at selected axial locations.

Batolomej and Chanturiya [24], and Bartolome;j et al. [25], investigated the subcooled boiling
of water in vertical pipes of inlet diameter D = 0.0154 m and 0.012 m, and length L =2 m
and 1.4 m, respectively. Average void fractions were measured at different axial locations at
pressures up to 15 MPa, mass fluxes up to 2000 kg m™s™ and heat fluxes up to 2.2 MW m™.
For this study, five cases were selected from these experiments at pressures up to 6.89 MPa,
mass fluxes up to 1500 kg m2s2 and heat fluxes up to 1.2 MW m™ (Table 1).

Roy et al. [21] tested the subcooled boiling of refrigerant R-113 in a vertical annulus of 3.66

m in length, 0.0158 m in inlet diameter and 0.0381 m in outlet diameter. A laser Doppler



velocimetry system allowed measurement of the velocity field and the turbulent fluctuations,
with an optical probe used to obtain the void fraction and the bubble diameter. The liquid and
vapour temperatures were measured with micro-thermocouples. Measurements were taken at
0.269 MPa and in the ranges 565 — 785 kg m™s™! for the mass flux, 79.4 — 125.9 kW m™ for
the heat flux and 42.7 — 50.2 °C for the inlet temperature. In a slightly different annular
channel, 2.376 m in length, 0.019 m in inlet diameter and 0.0375 m in outlet diameter, Lee et
al. [13] investigated the subcooled flow boiling of water at nearly atmospheric pressure, and
474 — 1061 kg m™s™! for the mass flux, 115 — 300 kW m for the heat flux and 11.5 —21.3 °C
for the inlet subcooling. Liquid velocity radial profiles were measured with a Pitot tube, and
vapour velocity and void fraction radial profiles with a two-conductivity probe method.

None of the previous experiments provides a complete characterization of the flow, which is
a shortcoming of most of the experimental data available to date. Limited measurements of
the bubble diameter are available from Roy et al. [21] and, therefore, the DEBORA
experiment is the only one that provides radial profiles of the average bubble diameter.
However, in the DEBORA experiment, liquid velocity profiles and liquid turbulence profiles
were not measured. Turbulence profiles, in particular, are only available from Roy et al. [21].
Temperatures were measured in the DEBORA and the Roy et al. [21] experiments, but not
by Lee et al. [13], which also did not provide any information on liquid turbulence and
bubble diameter. Finally, in Bartolomej and Chanturiya [24] and Bartolome;j et al. [25], and
since these experiments were undertaken at higher pressures and some decades ago, only the
average void fraction at different axial locations was measured. Even so, these experiments
are one of the few to give measurements at high pressure. The use of a large database
therefore overcame the limitation of each individual dataset, allowing validation of the model
for all physical quantities of interest. It is important to note, however, the necessity for more
detailed and comprehensive experimental data sets in order to improve our ability to predict
these kinds of flows, since, as will be seen in the following section, the parameters of interest

interact with each other in a rather complex and non-linear way.



Table 1. Summary of the experimental conditions included in the validation database.

Data Source p[MPa] pr [-] Glkgm3s! | g'[KWm? | Tin[°C] | Fluid | Geometry
debl Garnier et al. [22] 2.62 0.63 1996 73.9 68.5 R12 P
deb2 Garnier et al. [22] 2.62 0.63 1985 73.9 70.5 R12 P
deb3 Garnier et al. [22] 1.46 0.35 2023 76.3 39.7 R12 P
deb4 Garnier et al. [22] 1.46 0.35 2028 76.2 349 R12 P
deb5 Garnier et al. [22] 2.62 0.63 2981 109.4 69.2 R12 P
deb6 Garnier et al. [22] 3.01 0.73 1007 58.2 64.6 R12 P
royl Roy etal. [21] 0.269 0.08 565 79.4 42.7 R113 A
roy2 Roy et al. [21] 0.269 0.08 785 95.0 50.2 R113 A
roy3 Roy etal. [21] 0.269 0.08 785 125.9 50.2 R113 A
leel Lee etal. [13] atm 0.005 478 152.8 80.8 \\ A
lee2 Lee etal. [13] atm 0.005 477 114.8 88.5 \\ A
lee3 Lee etal. [13] atm 0.005 718 232.6 78.8 \\%4 A
leed Lee etal. [13] atm 0.005 714 197.2 86.2 \\%4 A
lee5 Lee etal. [13] atm 0.005 1061 300.0 81.9 \\% A
lee6 Lee etal. [13] atm 0.005 1047 251.2 86.6 \\% A
barl | G oa] 15 | 007 900 380 1383 | W P
bar2 | Cramunine 4] 45 | 020 900 570 1974 | W P
bar3 | Bartolomej et al. [25] 6.89 0.31 1500 1200 221.9 \\% P
bar4 | Bartolomej et al. [25] 6.89 0.31 1500 800 245.9 \\%4 P
bar5 | Bartolomej et al. [25] 6.89 0.31 1000 800 229.9 \\% P

atm = atmospheric; W = water; P = pipe; A = annular channel.
4  Results and discussion

4.1 Coalescence source

Before simulating the whole database, some model parameters had to be selected, starting
with the coalescence source, calculated from Yao and Morel [6]. In a previous work, a critical
Weber number Wecir = 0.10 in the coalescence efficiency allowed good agreement to be
obtained for different air-water bubbly flows in vertical pipes [65]. This agreement was
achieved in combination with the assumption of negligible bubble break-up, which is
expected to be even lower in boiling flows due to the lower expected bubble diameter. In
bubbly flow experiments, therefore, bubbles are usually injected with a diameter of the order
of a few millimetres. In contrast, during boiling, bubbles may detach from the wall with a
diameter up to one or two orders of magnitude smaller.

Yao and Morel [6] proposed a value of 1.24 for Wecrir, rather higher than the value of 0.1
adopted in [65]. These two values are compared for the debl and deb2 experiments (see
Table 1) in Figure 1. In the plots, profiles of the SMD and the void fraction are shown as a
function of the normalized radial distance, with the centre of the pipe located at »/R = 0.0 and
the wall at #/R = 1.0. As expected, Wecric has a significant impact on the SMD radial profile.
More specifically, Wecir = 0.10 leads to a large underestimation of the SMD, probably as a
consequence of weak bubble coalescence in the flow. With Wecir = 1.24, the SMD is still



under predicted in debl (Figure la), although the agreement is improved. For deb2, the
results are more in line with the experimental measurements (Figure 1c). Relative to the
SMD, other variables are less affected by the amount of coalescence, this being the case in
Figure 1 for the void fraction radial profiles (Figure 1b and Figure 1d). To provide a further
evaluation, experiment bar5 was also simulated and the axial distribution of the cross-
sectional averaged void fraction is shown in Figure 2. In this case, the difference between the
simulation results is more marked, with lower coalescence in the flow causing a lower
average void fraction, probably as a consequence of the higher condensation. The
condensation heat transfer coefficient is indeed inversely proportional to the bubble diameter.

In view of these results, Wecrir = 1.24 was selected for the following simulations.
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Figure 1. SMD and void fraction radial profiles compared against experiments deb1 (a,b) and

deb2 (c,d) and for different values of Wecrir in the coalescence model: (—) 1.24; (---) 0.1.
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different values of Weci in the coalescence model: (—) 1.24; (---) 0.1.

4.2 Bubble departure diameter

In preliminary simulations, it was found impossible to use, in the boiling model, the same set
of closure relations to address the entire database, in particular for the active nucleation site
density and the bubble departure diameter. For the nucleation site density, the Hibiki and Ishii
model [30] was maintained for the entire database because it accounts for the effect of more
parameters. Due to the fact that the database extends from atmospheric pressure up to 6.89
MPa, the Kocamustafaogullari model [32] was initially considered for the bubble departure
diameter, this being derived over the range 0.0067 < p < 14.18 MPa. In contrast, the
Tolubinsky and Kostanchuck [31] correlation was derived for 0.1 < p < 1.013 MPa and 0.08
< Ui < 020 m s and has a pressure insensitive formulation, with the bubble departure
diameter being only a function of the bulk subcooling. Unfortunately, using the
Kocamustafaogullari correlation [32], reliable results were not obtained for the Roy et al. [21]
data and the experiments of Bartolomej and co-authors [24,25]. An example is provided in
Figure 3, which shows predictions of the void distribution given by this correlation for the
bar2 (Figure 3b) and the bar4 (Figure 3d) experiments and compares these with the results
obtained using the Tolubinsky and Kostanchuk [31] correlation (Figure 3a and Figure 3c,
respectively). In the figure, /R = 0.0 corresponds to the pipe axis and 7/R = 1.0 to the pipe
wall. For bar2, at 4.5 MPa, Kocamustafaogullari [32] predicts a void fraction that is
comparable with that from Tolubinsky and Kostanchuk [31]. At higher pressure (bar4, 6.89



MPa), however, the void fraction predicted with Kocamustafaogullari [32] is almost
negligible, except for a very thin portion of the wall region. Therefore, due to the negligible
evaporation predicted in some of the experiments, for the data of Bartolomej and Chanturiya
[24], Bartolomej et al. [25] and Roy et al. [21], the Tolubinsky and Kostanchuk [31]
correlation was used.

To investigate the subject further, some bubble departure diameter data selected from the
literature was tested against the Kocamustafaogullari model [32]. These data were taken from
Unal et al. [66] for water at high pressure, and from Klausner et al. [67] and Zeng et al. [68]
who used refrigerant R113, as employed by Roy et al. [21], at atmospheric pressure.
Percentage relative errors between predictions and data are shown in Figure 4. In general, the
bubble departure diameter is under predicted. More specifically, 50 — 75 % smaller diameters
are found for refrigerant R113 and, for water, the departure diameter is overestimated at low
pressure, but under predicted by up to 100% at high pressure. Overall, the relative percentage
errors are rather high, therefore the model cannot be considered reliable over a wide range of
conditions.

In line with the approach of the paper, it would have been desirable to maintain the
Tolubinsky and Kostanchuk [31] correlation for the whole database. However, this
correlation is also not entirely reliable even given its range of validity, as it was found that
unrealistically large bubbles were predicted by it for some of the Lee et al. [13] and the
DEBORA [22] experiments at low pressure, which prevented convergence of the simulations.

Therefore, for these two databases, the Kocamustafaogullari [32] correlation was used.
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4.3 Comparison with the entire database

After the preliminary selection of some of the model parameters, the overall model was
applied to the whole database without further modification. Comparisons for the DEBORA
experiments are presented in Figure 5 and Figure 6, and in Figure 7 for Roy et al. [21], in
Figure 8§ for Lee et al. [13] and in Figure 9 for Batolomej and Chanturiya [24] and Bartolomej
et al. [25]. In these, and subsequent figures, symbols are used for experimental data and lines
for model predictions. In annular channels (Figure 7 and Figure 8), the radial position is non-
dimensionalized with the distance between the outer and inner radius and, therefore, in the
plots ( - Ri) / (Ro — Ri) = 0.0 identifies the inner wall, whereas (r - Ri) / (Ro — Ri) = 1.0
corresponds to the outer wall. Only the inner wall is heated in both the Roy et al. [14] and the
Lee et al. [13] experiments. In the following, discussion of the results is presented for each

physical quantity predicted.

4.3.1 Void fraction

Even if the specific quantitative accuracy depends on the particular experiment, the void
fraction profile is generally predicted with reasonable accuracy. More specifically, the
accuracy is satisfactory for the DEBORA experiment (Figure 5 and Figure 6), but with the
exception of deb6 (Figure 6¢) where the void profile is significantly under predicted. Also, an
over predicted void peak at the heated wall was obtained for deb4 (Figure 6a). For deb3, it
must be remarked that the void fraction profile (Figure 5j) is core-peaked and the bubble
diameter (Figure 5k) higher than in all the other experiments. It is known from the literature
that larger bubbles assume ellipsoidal shapes, being deformed by the inertia of the
surrounding liquid, and are pushed towards the centre of the pipe by a negative lift force [45].
In this experiment, bubbles may have been large enough to trigger the change of sign in the
lift force and, even if wall-peaked void profiles were predicted neglecting the lift
contribution, a negative lift was necessary to predict the void profile. In Figure 7, void
fraction profiles are well predicted for Roy et al. [21], the only discrepancy being a minor
underestimation in the case of roy3. In contrast, the void fraction tends to be underestimated
in the experiments of Lee et al. [13] (Figure 8). More specifically, the predicted void fraction
is in agreement with experiment or over predicted near the wall, whereas it is underestimated
in the remainder of the pipe. The best results are obtained at the lowest mass flux (leel in
Figure 8a and lee2 in Figure 8c), and the largest errors in lee5 (Figure 8i). Lastly, in the

Bartolomej and co-authors’ experiments [24,25], only the averaged axial void distribution



was available and this is well predicted for barl and bar2 (Figure 9a), apart from a divergence
at around 1.25 m in bar2. Reasonable agreement is found for the Bartolomej et al. [25]

experiments in Figure 9b, despite the slight over prediction in bar3 and bar5.

4.3.2 Sauter-mean diameter

Measurements of the SMD were available for the DEBORA experiments only. Overall, the
model under predicts the experiments, in particular near the centre of the pipe, although
reasonable agreement is achieved for experiments deb2 (Figure 5g) and deb3 (Figure 5k),
whereas the under prediction is particularly large in deb6 (Figure 6e). In more detail, the
SMD is underestimated close to the heated wall and, after a partial improvement in the first
region away from the wall, predictions decrease significantly towards the pipe axis. In
contrast, the experimental profiles tend to remain nearly flat towards the centre of the pipe. In
deb3 (Figure 5k), the SMD increases towards the pipe centre, most likely as a consequence of
the core-peaked void fraction profile in this experiment, a trend that is also predicted by the
simulation. Overall, the significant discrepancies with the experiments may be due to a
number of different factors, the individual impact of which is difficult to quantify. Certainly,
the interphase heat transfer coefficient and the models for coalescence and break-up may play
a role that needs to be investigated further. In addition, the underestimation of the SMD in the
wall region suggests a significant impact of the bubble departure diameter correlation. This,
in conjunction with the unreliability of each bubble departure correlation over a wide range of
conditions, discussed in Section 4.2, demonstrates how the development of more advanced,

mechanistic formulations of the bubble departure diameter is a priority for further research.



4.3.3 Liquid temperature

Liquid temperature profiles were measured by Roy et al. [21] and in the DEBORA
experiments. Overall, predictions are in good agreement with data. For the DEBORA
experiments, the flat temperature profile for deb2 (Figure 5h) and deb3 (Figure 51) indicates
a flow close to saturation that may have helped to limit the underestimation of the SMD for
these experiments (Figure 5g and Figure 5k). debl (Figure 5d), instead, shows a slightly
higher degree of subcooling near the axis. The Roy et al. [21] experiments (Figure 7d,
Figure 7h and Figure 71), which exhibit a higher degree of subcooling away from the wall,
are also well predicted, despite the temperature being slightly over estimated close to the

wall and under estimated near the axis.

4.3.4 Velocity profiles

Liquid and vapour average velocities were measured by Roy et al. [21] and Lee et al. [13],
whereas only the average vapour velocity profile is available for the DEBORA
experiments. The vapour velocity profile is very well predicted for deb3 (Figure 5i),
although for debl (Figure 5a) and deb2 (Figure Se), the profile remains flat near the pipe
centre, probably as a consequence of the lower value of the SMD in this region. However,
predictions may be considered satisfactory for these pipe flows. On the other hand, the
predicted accuracy is unsatisfactory in the annular channels of Roy et al. [21] and Lee et al.
[13]. More specifically, both predicted velocity profiles show a peak at the wall that is in
contrast found away from the wall in the experiments (Figure 7b, Figure 7f, Figure 7j,
Figure 8b, Figure 8d, Figure 8f, Figure 8h, Figure 8j and Figure 81). This phenomenon is
even more evident in the vapour velocity profiles. Away from the wall, in particular for
Roy et al. [21], the velocity profiles are more in agreement with the experiments. The peak
away from the wall is explained due to the presence, in this region, of larger bubbles that
flow with a higher relative velocity. In Lee et al. [13], probably as a consequence of the
atmospheric pressure that promotes the growth of even larger bubbles, these peaks are
sometimes found in the “unheated half” of the channel. In the simulations, however, the
SMD peaks at the wall and the model is unable to correctly account for the presence of the
larger bubbles, with this inability also contributing to the low SMD values and the flat
velocity profiles in the centre of the channel predicted in debl (Figure 5a) and deb2 (Figure
Se).



4.3.5 Turbulence

Turbulence was only measured by Roy et al. [21] and the streamwise and radial r.m.s. of the
liquid velocity fluctuations are shown in Figure 7c, Figure 7g and Figure 7k. Overall,
turbulence is well predicted except for the under predicted streamwise r.m.s. in royl (Figure
7¢). Also, the anisotropy of the turbulence field is reasonably well predicted by the Reynolds
stress turbulence model.

One of the advantages of building such a large database is the opportunity it affords to test
any model for all the variables of interest. However, and in view of the present results that
show the strengths of the model in some areas but weaknesses in others, measurements of all
the variables of interest in the same experiment are essential to further progress in the

modelling of boiling flows.
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Figure 5. Average vapour velocity, void fraction, SMD and liquid temperature radial profiles

compared against the DEBORA experiments: (a-d) debl; (e-h) deb2; (i-1) deb3.
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4.4 Near-wall treatment

In the previous section, the most significant deviations from experiments were found for the
average velocity profiles in the near-wall region of annular channels. In the last
computational cell close to the wall, the velocity boundary condition is imposed through the
use of wall functions, with the standard single-phase wall function having been used in the
simulations. Some authors [8,9,69] have demonstrated how predictions in the near-wall
region can be improved with the adoption of a simple wall roughness model, similar to those
used in turbulent flows over rough surfaces, but with the equivalent roughness equal to the
bubble departure diameter. To the authors’ knowledge, such a modification has yet to be
tested with an RSM turbulence model. In a first set of simulations with the RSM, it was
found difficult to reach convergence and handle the rather high wall roughness values (equal
to the bubble departure diameter). Therefore, the wall roughness model was tested using a k-¢
formulation. The results are reported in Figure 10 for experiments roy2, roy3 and lee2, and,
for the k-¢ model with the standard wall function, these show the same features discussed for
the RSM, i.e. liquid and vapour average velocity profiles show the same peak at the wall and
rather high values with respect to the experiments.

For the lower void fraction cases (roy2 and lee2), agreement for the liquid velocity improves
and the profile peaks at a certain distance from the wall with inclusion of the wall roughness

model (Figure 10b and Figure 10j). These improvements are limited to the roy2 experiment



for the vapour velocity profile (Figure 10c). In the highest void fraction experiment (roy3),
the improvement is also marginal for the liquid velocity (Figure 10f and Figure 10g). In roy2
and roy3, the wall roughness model also produces an increase in the void fraction (Figure 10a
and Figure 10e), although this remains unchanged in lee2 (Figure 101).

Overall, the introduction of the wall roughness model is seen to improve the predictions,
although the improvements noted are not significant in all cases examined. In addition to
further development of the wall model and its extension for use with RSM, it also seems
necessary, based on the discussion in Section 4.3.4, to better account for the behaviour of
larger bubbles, extending to boiling flows recently developed population balance models that
account for their behaviour separately [10,65].
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Figure 10. Void fraction and average liquid and vapour velocity radial profiles compared
against Roy et al. [21] and Lee et al. [13]: (a-c) royl; (e-g) roy2; (i-k) roy3. (—) standard

wall function; (---) wall roughness model [8].



45 Bubble-induced turbulence

It has been established how, in bubbly flows, the bubbles contribute to the turbulence of the
continuous phase and this contribution must be accounted for in the turbulence model
[48,54,60]. Many studies have been conducted on the subject, but only a few of them have
focused on boiling flows, and, therefore, the impact of the bubble contribution on the
turbulence is much more uncertain in these flows. In Section 4.3.5, the bubble-induced
contribution was neglected. Nevertheless, turbulence in the continuous phase was well
predicted, even if measurements were available only for Roy et al. [21] (Figure 7c, Figure 7¢g
and Figure 7k). This may suggest that bubble-induced turbulence is less important with
respect to adiabatic bubbly flows even if it must be noticed that, in Roy et al. [21], the void
fraction is very low or zero in the majority of the channel (Figure 7a, Figure 7e¢ and Figure
71). Also, in the regions of high void fraction close to the wall, this influence is further
complicated with respect to adiabatic bubbly flows due to the detachment into the bulk fluid
of bubbles growing on the heated wall.

The roy1 and roy3 calculations were repeated with the bubble-induced turbulence model (Eq.
(4) and Eq. (5)) and the results are shown in Figure 11. In royl, the r.m.s. values are changed
only in the region very close to the wall (Figure 11c¢), where the velocity fluctuations are now
overestimated. The same effect is obtained for roy3 and for a larger portion of the pipe
section (Figure 11f). Therefore, the model accuracy is generally worsened with inclusion of
the bubble-induced turbulence model. Void fraction (Figure 11a and Figure 11d) and average
velocity (Figure 11b and Figure 11e) predictions are also increased relative to those without
the bubble-induced turbulence contribution. The findings are, however, complicated by the
fact that, due to the peak in the velocity profiles, the shear-induced turbulence close to the
wall may also be overestimated and this may be the reason for the overestimation of
turbulence levels when the bubble-induced contribution is accounted for. More studies are
necessary on this subject, but, since bubbles detachment occurs in the first computational cell
close to the wall, and in view of the results from the previous section on the wall treatment, it
is suggested that the problem needs to be approached globally, addressing jointly in the same
model the velocity boundary condition and the generation of turbulence close to the wall, as

well as the contribution from the bubbles in this region.
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Figure 11 Void fraction, liquid (0o,——) and vapour (o,---,---) average velocity and

streamwise (0,—,——) and radial (o,---,---) r.m.s. of the liquid velocity fluctuations radial

profiles compared against Roy et al. [21]: (a-c) royl; (d-f) roy3. (—,---) without bubble

induced turbulence model; (—,---) with bubble induced turbulence model.

5 Conclusions

An Eulerian-Eulerian two-fluid CFD model, including a Reynolds stress turbulence model,
the method of moments-based S, population balance approach and a boiling model derived
from the RPI heat flux partitioning approach, was used to predict a large database of
subcooled boiling flows. The database includes 20 experiments of subcooled boiling flows of
water and refrigerants in vertical pipes and annular channels, and covers a wide range of
conditions.

Overall, the model confirms the potential of CFD to provide detailed predictions of boiling
flows and rather good agreement with data was found in some areas, but others still require
significant improvements in model accuracy. At the present time, the general applicability of
the model is not entirely satisfactory. Even if built in a mechanistic fashion, numerous
empirical closure relations are required, not only for wall boiling, but also for the population
balance and turbulence models. This clearly limits the overall model’s general applicability
and, therefore, the development of more mechanistic closures is highly desirable. A good
example is provided by the bubble departure diameter that cannot be predicted with accuracy

over extended ranges of conditions by the presently available correlations. The development



of physically-based, more accurate closure models is challenging and may only be achieved
with an increase in our knowledge of mechanisms that are as yet not completely understood,
such as the growth and departure of bubbles, but also their breakup and coalescence and the
interaction of turbulence with bubbles near the wall, amongst others.

The results show how studies such as the one described, which focused on a large database,
can profitably be used to integrate detailed analyses based on more limited amounts of data.
In the latter, major developments of specific sub-models can be derived and tested, but these
developments can only be accepted if they improve the general accuracy of models when
tested against large sets of data. The disparity observed between individual experiments
suggests that it is risky to judge the accuracy of any CFD model on the basis of a limited
number of comparisons with data.

Quantitatively, the predictive accuracy is satisfactory for the void fraction, except for a
limited number of cases, with the turbulence and liquid temperature fields also well
predicted. In contrast, the average bubble diameter, quantified by the SMD, tends to be
underestimated, sometimes significantly, in particular near the axis of the flows, with velocity
profiles also over predicted near the heated wall of annular channels, where they exhibit a
peak that is instead found away from the wall in the experiments.

Despite the inaccuracy of some predictions, the satisfactory results achieved in some areas
encourage further research:

e No correlation for the bubble departure diameter was found appropriate for the entire
database and the under prediction of the departure diameter was identified as a
possible source of error in the average bubble diameter predictions. The use of more
mechanistic formulations, already adopted by a limited number of researchers,
represents a way forward in this regard.

e Modelling of bubble break-up and coalescence needs to be improved, with related
improvements in population balance modelling also required. More specifically, the
ability to account for larger bubbles moving towards the flow centre, already available
for adiabatic flows, may improve the prediction of velocity profiles in both pipes and
channels.

e Velocity predictions near the wall were improved using a wall roughness model, but
further development is required, in particular in the context of RSM.

e Bubble-induced turbulence was demonstrated to be less relevant with respect to

adiabatic flows and the use of a specific model provided inconsistent results. A more



advanced modelling approach seems necessary near the wall, but it should be
addressed together with the wall treatment.
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Nomenclature

Ab fraction of the wall affected by the evaporation process [m™]
ai interfacial area concentration [m?> m™]

Cp drag coefficient [-]

Gy specific thermal capacity at constant pressure [J kg™! K]
D diameter [m]

ds bubble diameter [m]

derit critical bubble diameter [m]

dsm Sauter mean diameter [m]

dw bubble departure diameter [m]

Eo bubble Eotvos number Eo = g (p1 — pv) ds° / o [-]

Fq drag force [N m™]

Fmp turbulent dispersion force [N m™]

f frequency of bubble departure [s™']

G mass flux [kg m2s™']

g gravitational acceleration [m s72]

hq quenching heat transfer coefficient [W m~>K"!]

i latent heat of vaporization [J kg!]

Kbr break-up rate [s™]

Ko coalescence rate [s!]

Kary fraction of the heated wall in contact with the vapour phase [-]
k turbulence kinetic energy [m?s?]

L pipe/channel length [m]

M, y™ moment of the bubble diameter distribution [m’]

miy interphase mass transfer [kg m>s™]

N bubble generation rate per unit volume [bubbles m™s™']



Ny number of daughter bubbles [-]
n bubble number density [bubbles m™]
n’ nucleation site density [m]

P(ds) bubble diameter probability distribution [-]

Pr Prandtl number Pr=Cp u/ k [-]

p pressure [Pa]

pr reduced pressure p/perit [-]

Qev evaporative volumetric heat flux [W m™]

O liquid phase convective volumetric heat flux [W m™]

Oy quenching volumetric heat flux [W m™]

Oy vapour phase convective volumetric heat flux [W m™]

Ow total wall volumetric heat flux [W m™]

q" heat flux [W m2K!]

R radius [m]

Ry gas constant [J mol'K™!]

Rij Reynolds stress [m?s]

r radial coordinate [m]

Re bubble Reynolds number Re = p;1 Urds / u [-]

Shr source of S, due to bubble break-up [m” m3s!]

Sei source of S, due to bubble coalescence [m’ m=s]

Sm source of S, due to boiling and evaporation [m’ m>s]

SiBl bubble-induced turbulence kinetic energy source [kg m s]
SB bubble-induced turbulence energy dissipation rate source [kg m s]
S, density of the Y™ moment of the bubble diameter distribution [m’ m™]
AS)Pr change in S, due to a single break-up event [m’]

AS}f{'g' change in S, due to a single coalescence event [m’]

T temperature [°C]

T* dimensionless temperature [-]

t time [s]

tw waiting time for bubble departure [s]

U velocity [m s™']

Ur.m.s. streamwise r.m.s. of the velocity fluctuations [m s']

Vrem.s. radial r.m.s. of the velocity fluctuations [m s!]



Uz shear velocity [m s™']

We Weber number We = prudp / o [-]
Wecrit critical Weber number [-]

X spatial coordinate [m]

y+ dimensionless wall distance [-]

o void fraction [-]

€ turbulence energy dissipation rate [m?s™]
% contact angle [rad]
A thermal conductivity [W m'K"']
u viscosity [Pa s]
Ve turbulent kinematic viscosity [m?s™!]
p density [kg m™]
surface tension [N m™']
T8I bubble-induced turbulence timescale [s]
Thr break-up timescale [s]
Subscripts
continuous phase
d dispersed phase
i inner
in inlet
/ liquid
o outer
r relative
sat saturation
v vapour
w wall
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