970 research outputs found

    Signatures of Star-planet interactions

    Full text link
    Planets interact with their host stars through gravity, radiation and magnetic fields, and for those giant planets that orbit their stars within \sim10 stellar radii (\sim0.1 AU for a sun-like star), star-planet interactions (SPI) are observable with a wide variety of photometric, spectroscopic and spectropolarimetric studies. At such close distances, the planet orbits within the sub-alfv\'enic radius of the star in which the transfer of energy and angular momentum between the two bodies is particularly efficient. The magnetic interactions appear as enhanced stellar activity modulated by the planet as it orbits the star rather than only by stellar rotation. These SPI effects are informative for the study of the internal dynamics and atmospheric evolution of exoplanets. The nature of magnetic SPI is modeled to be strongly affected by both the stellar and planetary magnetic fields, possibly influencing the magnetic activity of both, as well as affecting the irradiation and even the migration of the planet and rotational evolution of the star. As phase-resolved observational techniques are applied to a large statistical sample of hot Jupiter systems, extensions to other tightly orbiting stellar systems, such as smaller planets close to M dwarfs become possible. In these systems, star-planet separations of tens of stellar radii begin to coincide with the radiative habitable zone where planetary magnetic fields are likely a necessary condition for surface habitability.Comment: Accepted for publication in the handbook of exoplanet

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Evaluation of the implementation of a clinical pharmacy service on an acute internal medicine ward in Italy

    Get PDF
    © 2018 The Author(s). Published by Springer Nature. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Background: Successful implementation of clinical pharmacy services is associated with improvement of appropriateness of prescribing. Both high clinical significance of pharmacist interventions and their high acceptance rate mean that potential harm to patients could be avoided. Evidence shows that low acceptance rate of pharmacist interventions can be associated with lack of communication between pharmacists and the rest of the healthcare team. The objective of this study was to evaluate the effect of a structured communication strategy on acceptance rate of interventions made by a clinical pharmacist implementing a ward-based clinical pharmacy service targeting elderly patients at high risk of drug-related problems. Characteristics of interventions made to improve appropriateness of prescribing, their clinical significance and intervention acceptance rate by doctors were recorded. Methods: A clinical pharmacy intervention study was conducted between September 2013 and December 2013 in an internal medicine ward of a teaching hospital. A trained clinical pharmacist provided pharmaceutical care to 94 patients aged over 70 years. The clinical pharmacist used the following communication and marketing tools to implement the service described: Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis; Specific, Measurable, Achievable, Realistic and Timely (SMART) goals; Awareness, Interest, Desire, Action (AIDA) model. Results: A total of 740 interventions were made by the clinical pharmacist. The most common drug classes involved in interventions were: antibacterials for systemic use (11.1%) and anti-parkinson drugs (10.8%). The main drug-related problem categories triggering interventions were: no specific problem (15.9%) and prescription writing error (12.0%). A total of 93.2% of interventions were fully accepted by physicians. After assessment by an external panel 63.2% of interventions (96 interventions/ per month) were considered of moderate clinical significance and 23.4% (36 interventions/ per month) of major clinical significance. The most frequent interventions were to educate a healthcare professional (20.4%) and change dose (16.1%). Conclusions: To our knowledge this is the first study evaluating the effect of a structured communication strategy on acceptance rate of pharmacist interventions. Pharmaceutical care delivered by the clinical pharmacist is likely to have had beneficial outcomes. Clinical pharmacy services like the one described should be implemented widely to increase patient safety.Peer reviewedFinal Published versio

    Latent Epstein-Barr Virus Can Inhibit Apoptosis in B Cells by Blocking the Induction of NOXA Expression

    Get PDF
    Latent Epstein-Barr virus (EBV) has been shown to protect Burkitt's lymphoma-derived B cells from apoptosis induced by agents that cause damage to DNA, in the context of mutant p53. This protection requires expression of the latency-associated nuclear proteins EBNA3A and EBNA3C and correlates with their ability to cooperate in the repression of the gene encoding the pro-apoptotic, BH3-only protein BIM. Here we confirm that latent EBV in B cells also inhibits apoptosis induced by two other agents – ionomycin and staurosporine – and show that these act by a distinct pathway that involves a p53-independent increase in expression of another pro-apoptotic, BH3-only protein, NOXA. Analyses employing a variety of B cells infected with naturally occurring EBV or B95.8 EBV-BAC recombinant mutants indicated that the block to NOXA induction does not depend on the well-characterized viral latency-associated genes (EBNAs 1, 2, 3A, 3B, 3C, the LMPs or the EBERs) or expression of BIM. Regulation of NOXA was shown to be at least partly at the level of mRNA and the requirement for NOXA to induce cell death in this context was demonstrated by NOXA-specific shRNA-mediated depletion experiments. Although recombinant EBV with a deletion removing the BHRF1 locus – that encodes the BCL2-homologue BHRF1 and three microRNAs – partially abrogates protection against ionomycin and staurosporine, the deletion has no effect on the EBV-mediated block to NOXA accumulation

    Augmenting Smart Buildings and Autonomous Vehicles with Wearable Thermal Technology

    Full text link
    Smart buildings and autonomous vehicles are expected to see rapid growth and adoption in the coming decades. Americans spend over 90% of their lives in buildings or automobiles, meaning that 90% of their lives could be spent interfacing with intelligent environments. EMBR Labs has developed EMBR WaveTM, a wearable thermoelectric system, for introducing thermal sensation as a connected mode of interaction between smart environments and their occu-pants. In this paper we highlight applications of wearable thermal technology for passengers in autonomous vehicles and occupants of smart buildings. Initial find-ings, collected through partnerships with Draper and UC Berkeley, respectively, are presented that illustrate the potential for wearable thermal technology to im-prove the situational awareness of passengers in autonomous vehicles and im-prove personal comfort in smart buildings

    Aerobic exercise in adolescents with obesity: preliminary evaluation of a modular training program and the modified shuttle test

    Get PDF
    BACKGROUND: Increasing activity levels in adolescents with obesity requires the development of exercise programs that are both attractive to adolescents and easily reproducible. The aim of this study was to develop a modular aerobic training program for adolescents with severe obesity, with a focus on variety, individual targets and acquiring physical skills. We report here the effects on aerobic fitness from a pilot study. Furthermore, we examined the feasibility of the modified shuttle test (MST) as an outcome parameter for aerobic fitness in adolescents with severe obesity. METHODS: Fifteen adolescents from an inpatient body weight management program participated in the aerobic training study (age 14.7 ± 2.1 yrs, body mass index 37.4 ± 3.5). The subjects trained three days per week for 12 weeks, with each session lasting 30–60 minutes. The modular training program consisted of indoor, outdoor and swimming activities. Feasibility of the MST was studied by assessing construct validity, test-retest reliability and sensitivity to change. RESULTS: Comparing pretraining and end of training period showed large clinically relevant and significant improvements for all aerobic indices: e.g. VO(2 peak )17.5%, effect size (ES) 2.4; W(max )8%, ES 0.8. In addition, a significant improvement was found for the efficiency of the cardiovascular system as assessed by the oxygen pulse (15.8%, ES 1.6). Construct validity, test-retest reliability and sensitivity to change of the MST were very good. MST was significantly correlated with VO(2 peak )(r = 0.79) and W(max )(r = 0.84) but not with anthropometric measures. The MST walking distance improved significantly by 32.5%, ES 2.5. The attendance rate at the exercise sessions was excellent. CONCLUSION: This modular, varied aerobic training program has clinically relevant effects on aerobic performance in adolescents with severe obesity. The added value of our aerobic training program for body weight management programs for adolescents with severe obesity should be studied with a randomized trial. This study further demonstrated that the MST is a reliable, sensitive and easy to administer outcome measure for aerobic fitness in adolescent body weight management trials

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-
    corecore