1,599 research outputs found
High (but Not Low) Urinary Iodine Excretion Is Predicted by Iodine Excretion Levels from Five Years Ago
Background: It has not been investigated whether there are associations between urinary iodine (UI) excretion measurements some years apart, nor whether such an association remains after adjustment for nutritional habits. The aim of the present study was to investigate the relation between iodine-creatinine ratio (ICR) at two measuring points 5 years apart. Methods: Data from 2,659 individuals from the Study of Health in Pomerania were analyzed. Analysis of covariance and Poisson regressions were used to associate baseline with follow-up ICR. Results: Baseline ICR was associated with follow-up ICR. Particularly, baseline ICR >300 mu g/g was related to an ICR >300 mu g/g at follow-up (relative risk, RR: 2.20; p < 0.001). The association was stronger in males (RR: 2.64; p < 0.001) than in females (RR: 1.64; p = 0.007). In contrast, baseline ICR <100 mu g/g was only associated with an ICR <100 mu g/g at follow-up in males when considering unadjusted ICR. Conclusions: We detected only a weak correlation with respect to low ICR. Studies assessing iodine status in a population should take into account that an individual with a low UI excretion in one measurement is not necessarily permanently iodine deficient. On the other hand, current high ICR could have been predicted by high ICR 5 years ago. Copyright (C) 2011 S. Karger AG, Base
Evaluation of the zucker diabetic fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles
Representative animal models for diabetes-associated vascular complications are extremely relevant in assessing potential therapeutic drugs. While several rodent models for type 2 diabetes (T2D) are available, their relevance in recapitulating renal and cardiovascular features of diabetes in man is not entirely clear. Here we evaluate at the molecular level the similarity between Zucker diabetic fatty (ZDF) rats, as a model of T2D-associated vascular complications, and human disease by urinary proteome analysis. Urine analysis of ZDF rats at early and late stages of disease compared to age- matched LEAN rats identified 180 peptides as potentially associated with diabetes complications. Overlaps with human chronic kidney disease (CKD) and cardiovascular disease (CVD) biomarkers were observed, corresponding to proteins marking kidney damage (eg albumin, alpha-1 antitrypsin) or related to disease development (collagen). Concordance in regulation of these peptides in rats versus humans was more pronounced in the CVD compared to the CKD panels. In addition, disease-associated predicted protease activities in ZDF rats showed higher similarities to the predicted activities in human CVD. Based on urinary peptidomic analysis, the ZDF rat model displays similarity to human CVD but might not be the most appropriate model to display human CKD on a molecular level
On the renormalization of multiparton webs
We consider the recently developed diagrammatic approach to soft-gluon
exponentiation in multiparton scattering amplitudes, where the exponent is
written as a sum of webs - closed sets of diagrams whose colour and kinematic
parts are entangled via mixing matrices. A complementary approach to
exponentiation is based on the multiplicative renormalizability of intersecting
Wilson lines, and their subsequent finite anomalous dimension. Relating this
framework to that of webs, we derive renormalization constraints expressing all
multiple poles of any given web in terms of lower-order webs. We examine these
constraints explicitly up to four loops, and find that they are realised
through the action of the web mixing matrices in conjunction with the fact that
multiple pole terms in each diagram reduce to sums of products of lower-loop
integrals. Relevant singularities of multi-eikonal amplitudes up to three loops
are calculated in dimensional regularization using an exponential infrared
regulator. Finally, we formulate a new conjecture for web mixing matrices,
involving a weighted sum over column entries. Our results form an important
step in understanding non-Abelian exponentiation in multiparton amplitudes, and
pave the way for higher-loop computations of the soft anomalous dimension.Comment: 60 pages, 15 figure
Real-life use of vitamin D<sub>3-</sub>fortified bread and milk during a winter season: the effects of CYP2R1 and GC genes on 25-hydroxyvitamin D concentrations in Danish families, the VitmaD study.
Common genetic variants rs10741657 and rs10766197 in CYP2R1 and rs4588 and rs842999 in GC and a combined genetic risk score (GRS) of these four variants influence late summer 25-hydroxyvitamin D (25(OH)D) concentrations. The objectives were to identify those who are most at risk of developing low vitamin D status during winter and to assess whether vitamin D(3)-fortified bread and milk will increase 25(OH)D concentrations in those with genetically determined low 25(OH)D concentrations at late summer. We used data from the VitmaD study. Participants were allocated to either vitamin D(3)-fortified bread and milk or non-fortified bread and milk during winter. In the fortification group, CYP2R1 (rs10741657) and GC (rs4588 and rs842999) were statistically significantly associated with winter 25(OH)D concentrations and CYP2R1 (rs10766197) was borderline significant. There was a negative linear trend between 25(OH)D concentrations and carriage of 0–8 risk alleles (p < 0.0001). No association was found for the control group (p = 0.1428). There was a significant positive linear relationship between different quintiles of total vitamin D intake and the increase in 25(OH)D concentrations among carriers of 0–2 (p = 0.0012), 3 (p = 0.0001), 4 (p = 0.0118) or 5 (p = 0.0029) risk alleles, but not among carriers of 6–8 risk alleles (p = 0.1051). Carriers of a high GRS were more prone to be vitamin D deficient compared to carriers of a low GRS. Furthermore, rs4588-AA carriers have a low but very stable 25(OH)D concentration, and interestingly, also low PTH level. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12263-014-0413-7) contains supplementary material, which is available to authorized users
Circulating microRNAs Reveal Time Course of Organ Injury in a Porcine Model of Acetaminophen-Induced Acute Liver Failure
Acute liver failure is a rare but catastrophic condition which can progress rapidly to multi-organ failure. Studies investigating the onset of individual organ injury such as the liver, kidneys and brain during the evolution of acute liver failure, are lacking. MicroRNAs are short, non-coding strands of RNA that are released into the circulation following tissue injury. In this study, we have characterised the release of both global microRNA and specific microRNA species into the plasma using a porcine model of acetaminophen-induced acute liver failure. Pigs were induced to acute liver failure with oral acetaminophen over 19h±2h and death occurred 13h±3h thereafter. Global microRNA concentrations increased 4h prior to acute liver failure in plasma (P<0.0001) but not in isolated exosomes, and were associated with increasing plasma levels of the damage-associated molecular pattern molecule, genomic DNA (P<0.0001). MiR122 increased around the time of onset of acute liver failure (P<0.0001) and was associated with increasing international normalised ratio (P<0.0001). MiR192 increased 8h after acute liver failure (P<0.0001) and was associated with increasing creatinine (P<0.0001). The increase in miR124-1 occurred concurrent with the pre-terminal increase in intracranial pressure (P<0.0001) and was associated with decreasing cerebral perfusion pressure (P<0.002)
A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus
Generally, the second messenger bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-diGMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be—at least partially—functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus
Decreasing overweight and central fat patterning with Westernization among the Inuit in Greenland and Inuit migrants
Week and weekend day cadence patterns long-term post-bariatric surgery
Obesity can negatively influence walking cadence, reducing the overall intensity of daily activities and increasing the risk of weight gain.
Purpose: Objectively describe the walking cadence of individuals’ long-term post-bariatric surgery.
Methods: Fifty-eight participants, 51.2 ± 8.9 years old, with a BMI of 34.6 ± 10.1 kg/m2, 10.0 ± 3.1 years post-surgery wore an activPAL accelerometer for 7 consecutive days. Data was analyzed using participants’ current BMI, dichotomized by obesity status, < or ≥ 30 kg/m2.
Results: On average, participants walked 5124 ± 2549 steps/day on weekdays and 6097 ± 2786 steps/day on weekend days (p = .003). Participants spent the majority (75%) of their daily steps at a slow-walking average cadence (non-obese: week = 65.3 ± 5.0 steps/min and weekend = 63.8 ± 6.7 steps/min; obese: week = 67.8 ± 8.2 steps/min and weekend = 63.3 ± 6.9 steps/min), with no difference between groups for week or weekend days (p = .153 and .774). The cadence of participants with obesity was significantly lower on weekends compared to weekdays for walking events > 30 s (p = .002) and > 60 s (p = .008) in duration. Weekday cadence of participants without obesity was similar to weekend day cadence across all walking event durations. The majority of walking events occurred below 30 s in duration for all participants.
Conclusions: Long-term post-bariatric surgery, movement occurs in short duration bouts at a slow-walking cadence for the majority of movement. Individuals without obesity had similar movement patterns from week to weekend days while participants with obesity significantly lowered their cadence on weekend days
2019 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations : summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces
The International Liaison Committee on Resuscitation has initiated a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation science. This is the third annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. It addresses the most recent published resuscitation evidence reviewed by International Liaison Committee on Resuscitation Task Force science experts. This summary addresses the role of cardiac arrest centers and dispatcher-assisted cardiopulmonary resuscitation, the role of extracorporeal cardiopulmonary resuscitation in adults and children, vasopressors in adults, advanced airway interventions in adults and children, targeted temperature management in children after cardiac arrest, initial oxygen concentration during resuscitation of newborns, and interventions for presyncope by first aid providers. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the certainty of the evidence on the basis of the Grading of Recommendations, Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence to Decision Framework Highlights sections. The task forces also listed priority knowledge gaps for further research
- …
