3,242 research outputs found

    Integrative analysis of next generation sequencing for small non-coding RNAs and transcriptional regulation in Myelodysplastic Syndromes

    Get PDF
    Abstract. Background: Myelodysplastic Syndromes (MDSS) are pre-leukemic disorders with increasing incident rates worldwide, but very limited treatment options. Little is known about small regulatory RNAs and how they contribute to pathogenesis, progression and transcriptome changes in MDS. Methods. Patients' primary marrow cells were screened for short RNAs (RNA-seq) using next generation sequencing. Exon arrays from the same cells were used to profile gene expression and additional measures on 98 patients obtained. Integrative bioinformatics algorithms were proposed, and pathway and ontology analysis performed. Results: In low-grade MDS, observations implied extensive post-transcriptional regulation via microRNAs (miRNA) and the recently discovered Piwi interacting RNAs (piRNA). Large expression differences were found for MDS-associated and novel miRNAs, including 48 sequences matching to miRNA star (miRNA*) motifs. The detected species were predicted to regulate disease stage specific molecular functions and pathways, including apoptosis and response to DNA damage. In high-grade MDS, results suggested extensive post-translation editing via transfer RNAs (tRNAs), providing a potential link for reduced apoptosis, a hallmark for this disease stage. Bioinformatics analysis confirmed important regulatory roles for MDS linked miRNAs and TFs, and strengthened the biological significance of miRNA*. The "RNA polymerase II promoters" were identified as the tightest controlled biological function. We suggest their control by a miRNA dominated feedback loop, which might be linked to the dramatically different miRNA amounts seen between low and high-grade MDS. Discussion. The presented results provide novel findings that build a basis of further investigations of diagnostic biomarkers, targeted therapies and studies on MDS pathogenesis. © 2011 Beck et al; licensee BioMed Central Ltd

    Invasion speeds for structured populations in fluctuating environments

    Get PDF
    We live in a time where climate models predict future increases in environmental variability and biological invasions are becoming increasingly frequent. A key to developing effective responses to biological invasions in increasingly variable environments will be estimates of their rates of spatial spread and the associated uncertainty of these estimates. Using stochastic, stage-structured, integro-difference equation models, we show analytically that invasion speeds are asymptotically normally distributed with a variance that decreases in time. We apply our methods to a simple juvenile-adult model with stochastic variation in reproduction and an illustrative example with published data for the perennial herb, \emph{Calathea ovandensis}. These examples buttressed by additional analysis reveal that increased variability in vital rates simultaneously slow down invasions yet generate greater uncertainty about rates of spatial spread. Moreover, while temporal autocorrelations in vital rates inflate variability in invasion speeds, the effect of these autocorrelations on the average invasion speed can be positive or negative depending on life history traits and how well vital rates ``remember'' the past

    An extragalactic supernebula confined by gravity

    Full text link
    Little is known about the origins of the giant star clusters known as globular clusters. How can hundreds of thousands of stars form simultaneously in a volume only a few light years across the distance of the sun to its nearest neighbor? Radiation pressure and winds from luminous young stars should disperse the star-forming gas and disrupt the formation of the cluster. Globular clusters in our Galaxy cannot provide answers; they are billions of years old. Here we report the measurement of infrared hydrogen recombination lines from a young, forming super star cluster in the dwarf galaxy, NGC 5253. The lines arise in gas heated by a cluster of an estimated million stars, so young that it is still enshrouded in gas and dust, hidden from optical view. We verify that the cluster contains 4000-6000 massive, hot "O" stars. Our discovery that the gases within the cluster are bound by gravity may explain why these windy and luminous O stars have not yet blown away the gases to allow the cluster to emerge from its birth cocoon. Young clusters in "starbursting" galaxies in the local and distant universe may be similarly gravitationally confined and cloaked from view.Comment: Letter to Natur

    Evaluation of Xpert® MTB/RIF and ustar easyNAT™ TB IAD for diagnosis of tuberculous lymphadenitis of children in Tanzania : a prospective descriptive study

    Get PDF
    Fine needle aspiration biopsy has become a standard approach for diagnosis of peripheral tuberculous lymphadenitis. The aim of this study was to compare the performance of Xpert MTB/RIF and Ustar EasyNAT TB IAD nucleic acid amplification assays, against acid-fast bacilli microscopy, cytology and mycobacterial culture for the diagnosis of TB lymphadenitis in children from a TB-endemic setting in Tanzania.; Children of 8 weeks to 16 years of age, suspected of having TB lymphadenitis, were recruited at a district hospital in Tanzania. Fine needle aspirates of lymph nodes were analysed using acid-fast bacilli microscopy, liquid TB culture, cytology, Xpert MTB/RIF and EasyNAT. Latent class analysis and comparison against a composite reference standard comprising "culture and/or cytology" was done, to assess the performance of Xpert MTB/RIF and EasyNAT for the diagnosis of TB lymphadenitis.; Seventy-nine children were recruited; 4 were excluded from analysis. Against a composite reference standard of culture and/or cytology, Xpert MTB/RIF and EasyNAT had a sensitivity and specificity of 58 % and 93 %; and 19 % and 100 % respectively. Relative to latent class definitions, cytology had a sensitivity of 100 % and specificity of 94.7 %.; Combining clinical assessment, cytology and Xpert MTB/RIF may allow for a rapid and accurate diagnosis of childhood TB lymphadenitis. Larger diagnostic evaluation studies are recommended to validate these findings and on Xpert MTB/RIF to assess its use as a solitary initial test for TB lymphadenitis in children

    Effects of Blood Products on Inflammatory Response in Endothelial Cells In Vitro

    Get PDF
    BACKGROUND: Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. METHODS: The inflammatory response from pre-activated (endotoxin-stimulated) and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC), platelet concentrates (PC) and fresh frozen plasma (FFP) was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. RESULTS: Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. CONCLUSION: Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells

    Phenoloxidase activity acts as a mosquito innate immune response against infection with semliki forest virus

    Get PDF
    Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses

    The co-evolution of technological promises, modelling, policies and climate change targets

    Get PDF
    The nature and framing of climate targets in international politics has changed substantially since their early expressions in the 1980s. Here, we describe their evolution in five phases-from 'climate stabilization' to specific 'temperature outcomes'-co-evolving with wider climate politics and policy, modelling methods and scenarios, and technological promises (from nuclear power to carbon removal). We argue that this co-evolution has enabled policy prevarication, leaving mitigation poorly delivered, yet the technological promises often remain buried in the models used to inform policy. We conclude with a call to recognise and break this pattern to unleash more effective and just climate policy. This Perspective maps the history of climate targets and shows how the international goal of avoiding dangerous climate change has been reinterpreted in the light of new modelling methods and technological promises, ultimately enabling policy prevarication and limiting mitigation

    Combining Feature Selection and Integration—A Neural Model for MT Motion Selectivity

    Get PDF
    Background: The computation of pattern motion in visual area MT based on motion input from area V1 has been investigated in many experiments and models attempting to replicate the main mechanisms. Two different core conceptual approaches were developed to explain the findings. In integrationist models the key mechanism to achieve pattern selectivity is the nonlinear integration of V1 motion activity. In contrast, selectionist models focus on the motion computation at positions with 2D features. Methodology/Principal Findings: Recent experiments revealed that neither of the two concepts alone is sufficient to explain all experimental data and that most of the existing models cannot account for the complex behaviour found. MT pattern selectivity changes over time for stimuli like type II plaids from vector average to the direction computed with an intersection of constraint rule or by feature tracking. Also, the spatial arrangement of the stimulus within the receptive field of a MT cell plays a crucial role. We propose a recurrent neural model showing how feature integration and selection can be combined into one common architecture to explain these findings. The key features of the model are the computation of 1D and 2D motion in model area V1 subpopulations that are integrated in model MT cells using feedforward and feedback processing. Our results are also in line with findings concerning the solution of the aperture problem. Conclusions/Significance: We propose a new neural model for MT pattern computation and motion disambiguation that i

    Distorted Cognitive Processing in Youth: The Structure of Negative Cognitive Errors and Their Associations with Anxiety

    Get PDF
    The Children’s Negative Cognitive Error Questionnaire (CNCEQ) is commonly used to measure four errors in young people’s thinking, but research has failed to support the factorial validity of the measure. The primary objective of the present study was to examine the factor structure of a refined and extended version of the CNCEQ. Revision of the CNCEQ involved the exclusion of items rated as contaminated, and the addition of items measuring cognitive errors closely associated with anxiety (‘threat conclusion’ and ‘underestimation of the ability to cope’). A secondary objective was to determine the relation between the negative cognitive errors and anxiety. Principal component analysis of data from 481 children and adolescents indicated five distinct negative cognitive error subscales labeled ‘underestimation of the ability to cope’, ‘personalizing without mind reading’, ‘selective abstraction’, ‘overgeneralizing’, and ‘mind reading’ which contained the new ‘threat conclusion’ items. Confirmatory factor analysis in an independent sample of 295 children and adolescents yielded further support for the five-factor solution. All cognitive errors except ‘selective abstraction’ were correlated with anxiety. Multiple regression analysis indicated that the strongest predictors of anxiety were the two subscales containing new items, namely ‘underestimation of the ability to cope’ and ‘mind reading’. The results are discussed with respect to further development of the instrument so as to advance the assessment of distorted cognitive processing in young people with internalizing symptoms
    corecore