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Abstract

Background: Myelodysplastic Syndromes (MDSS) are pre-leukemic disorders with increasing incident rates
worldwide, but very limited treatment options. Little is known about small regulatory RNAs and how they
contribute to pathogenesis, progression and transcriptome changes in MDS.

Methods: Patients’ primary marrow cells were screened for short RNAs (RNA-seq) using next generation
sequencing. Exon arrays from the same cells were used to profile gene expression and additional measures on 98
patients obtained. Integrative bioinformatics algorithms were proposed, and pathway and ontology analysis
performed.

Results: In low-grade MDS, observations implied extensive post-transcriptional regulation via microRNAs (miRNA)
and the recently discovered Piwi interacting RNAs (piRNA). Large expression differences were found for MDS-
associated and novel miRNAs, including 48 sequences matching to miRNA star (miRNA*) motifs. The detected
species were predicted to regulate disease stage specific molecular functions and pathways, including apoptosis
and response to DNA damage. In high-grade MDS, results suggested extensive post-translation editing via transfer
RNAs (tRNAs), providing a potential link for reduced apoptosis, a hallmark for this disease stage. Bioinformatics
analysis confirmed important regulatory roles for MDS linked miRNAs and TFs, and strengthened the biological
significance of miRNA*. The “RNA polymerase II promoters” were identified as the tightest controlled biological
function. We suggest their control by a miRNA dominated feedback loop, which might be linked to the
dramatically different miRNA amounts seen between low and high-grade MDS.

Discussion: The presented results provide novel findings that build a basis of further investigations of diagnostic
biomarkers, targeted therapies and studies on MDS pathogenesis.

Background
Myelodysplastic Syndromes (MDS) are a group of het-
erogeneous hematopoietic stem cell disorders, which
often lead to acute myeloid leukemia (AML). This group
of diseases is most common in the growing demo-
graphic of the late sixties-early seventies [1]. In the Uni-
ted States the estimated number of new cases per year

is about 40,000-76,000 with an attached cost of about
30.000 USD per person and year.
MDS is characterized by ineffective bone marrow

hematopoiesis, leading to cytopenias [2], with a highly
variable disease progression that ranges from a slow
development over many years to a rapid progression to
AML within a few months. Patients can be classified
into risk groups, primarily based on bone marrow mye-
loblast counts [3,4]. These include refractory anemia
(RA), describing an early disease stage (low-grade MDS)
and the refractory anemias with excess of blasts
(RAEB1, RAEB2), which represent the later stages of the
disease (high-grade MDS). While the median survival
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times are relatively long in the low and intermediate-1
classes, 97 and 63 months respectively, they are consid-
erably shorter in the later classes with 26 for the inter-
mediate-2 and only 11 months in the high risk group
[5]. Current treatment options are rare and show only
limited success. They mainly include allogeneic stem
cell transplantation, treatment with hypomethylating
agents and Lenalidomide.
There is increasing evidence that dysregulation of a

number of different molecular pathways is involved
from the disease onset, however, clearly defined
mechanisms remain elusive [6]. The accumulation of
cellular death is a common trait for the early stage of
MDS [7,8]. It is thought to counteract the proliferation
of dysfunctional cells and is the key characteristic of
ineffective hematopoiesis and marrow failure [9,10].
With the continued expansion of diseased cells, genetic
damage accumulates and contributes to disease progres-
sion, which may result in the transformation to AML.
The later stages of MDS have been implicated with
angiogenesis and reduced apoptosis [11-15].
Recent studies have suggested that small non-coding

RNAs (sRNAs), in particular microRNAs (miRNAs),
contribute to the pathogenesis and progression of MDS
[16,17]. However, very limited information on sRNA
expression has been reported for MDS to date. To over-
come this bottleneck, we performed high-throughput
next generation sequencing of small RNAs (RNA-seq) in
primary marrow cells of low- and high-grade MDS
patients, together with matched controls. The relatively
new technology of RNA-seq [18] is the method of
choice for sensitive global detection of different sRNAs
across an unparalleled dynamic range, and we detected
sRNAs with read counts from ten to one million reads.
The data obtained here suggest important roles for
Piwi-interacting RNAs (piRNA), transfer RNAs (tRNA)
and miRNAs, including many known and novel micro-
RNAs star (miRNA*). Further functional analysis of
miRNA/miRNA* showed that these species regulate dis-
ease stage-specific molecular functions and pathways, in
particular, those known to be deregulated at the gene
expression level. In addition, integrative bioinformatics
modeling of our experimental data and bioinformatics
databases identified the disease stage-specific regulation
of the polymerase II promoter by miRNAs and tran-
scription factors (TFs). This suggested a feedback loop
that might contribute to the attenuation of miRNA
expression in high-grade MDS.

Methods
Patient samples
Samples were obtained from patients presenting at The
Methodist Hospital. The use of marrow samples was
approved by The Methodist Hospital Institutional

Review Board. All research described conformed to the
Helsinki Declaration.

High throughput small RNA sequencing and data analysis
RNA in the 18-30 bp range was isolated from a 15 per-
cent urea-PAGE gel, and ligated to Solexa SRA5’ and
SRA 3’ adapters, according to the standard protocol
(available: http://www.illumina.com). Briefly, the SRA5’
adapter was ligated to the 5’ end of the selected RNAs.
The ligation products were gel purified and SRA3’ adap-
ters ligated to their 3’ ends. The resulting products were
also gel purified, reverse transcribed and amplified with
primers containing sequences complementary to the
SRA5’ and SRA3’ adapters, after which they were gel
purified again. The size and quality of the resulting
libraries were verified using an Agilent DNA1000 Bioa-
nalyzer chip (Agilent) and sequenced on a Solexa
GAIIx, using PhiX as a loading control and analyzed
with the standard Illumina Pipeline version 1.4. This
produced approximately 13 million reads per lane.
In our analysis we used the s_x_sequence.txt files,

containing 64 bit quality-scored output per-lane. The
first 20bases of these reads were parsed in Mysql data-
base tables, and further analyses utilized the MySQL
database engine.
At this stage, the database was employed to identify

and count distinct reads and to export this information
into fasta formatted output files (Additional files 1, 2, 3).
The results were used to map each small RNA to its
matching position in the human genome. A variety of
algorithms exists to perform this task including ELAND,
which is provided with the Solexa GAIIx. However, a
particular fast and memory efficient algorithm that out-
performs other approaches is Bowtie [19]. This algo-
rithm allows filtering alignments based on mismatches
and can omit reads matched to multiple positions on
the reference. The human genome version GRCh37 was
downloaded from the NCBI website and converted into
a bowtie index file. All distinct reads were aligned to
this reference sequence. We allowed for at most two
mismatches and only considered reads that aligned to at
most 25 positions in the genome (parameter setting v =
2 and m = 25). With this parameter set, on average, 70
percent of the short sequence reads from all three lanes
had positive matches to genome coordinates, about 21
percent did not match any genome position and about
10 percent had more than 25 matches.
A number of different databases were used as annota-

tion basis for the aligned next generation sequencing
reads. Information on sequences and genome positions
of miRNAs were obtained from miRBase version 14.
However, since our sample preparation and sequencing
protocol is not specific for miRNAs, we downloaded
information on other small RNAs from the UCSC
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genome browser. This contains genome positions for
different small RNAs, including but not limited to
tRNAs, rRNAs, scRNAs, suRNAs and srpRNA in the
repeatmasker track, as well as positions of known exons.
The sequences of known human piRNAs were searched
and downloaded from the NCBI http://www.ncbi.nlm.
nih.gov.
The implemented annotation algorithm first checked if

a read falls into a known miRNA loci (compare Figure 1).
Unmatched reads were further aligned to primary
miRNA sequences and perfect matches registered. If no
match was identified, known loci for other small RNAs
were searched in the following order rRNA, scRNA,
sRNA, srpRNA, simple repeat and other RNAs. If a read
was still uncharacterized, it was aligned against all piRNA
sequences and matches returned for perfect alignments.
Finally, if none of the above criteria was satisfied, posi-
tions for all human exons were first checked, if no match
was identified reads were classified as unknown. The
number of sequenced reads that annotated with a known
RNA locus were used to represent its expression.
The read counts for miRNA and miRNA* were com-

pared for the RA, RAEB2 and controls and significant
differential expression defined following the example in
[20]. We required that the ratio R of read counts in two
different cells was within R1 > 1.5 ∨ R2 < 0.67 and the

read count difference D within D1 > 100 ∨ D2 < -100.
Consequently, over expression was defined byR1 and D1

and under expression byR2 and D2.

Exon array profiling and data analysis
A total of 50ng RNA was extracted from each analyzed
sample. We used primer provided from NuGEN and fol-
lowed the manufacturer’s protocol for the first strand
cDNA synthesis. For RNA primer annealing, their mix-
tures were incubated for 2 minutes at 65°C and cooled
to 4°C. After cooling, cDNA synthesis cycle followed; 4°
C for 1 minute, 25°C for 10 minutes, 42°C for 10 min-
utes, 70°C for 15 minutes, and again 4°C for 1 minute.
The second stranded reaction followed immediately.
After mixing the first strand solution with second strand
cDNA synthesis reaction solution, the entire mixture
was incubated in the thermocycler as follows: 4°C for 1
minute, 25°C for 10 minutes, 50°C for 30 minutes, 70°C
for 5 minutes, 4°C. Then, using the Agencourt® RNA-
Clean® beads, the entire cDNA was purified according
to the manufacturer’s protocol. For the sense transcript
cDNA generation, WT-Ovation™ Exon Module
(NuGEN) was used. Based on the instructions in the
manufacturer’s manual, 3 μg of each cDNA was mixed
with the provided primers and incubated for 5 minutes
at 95°C and cooled to 4°C. After mixing with enzyme

Figure 1 NGS data analysis pipeline and comparison of sRNA annotations in MDS. NGS data analysis pipeline used for this study. In A) we
show the annotation of a sequence read. It was detected about 18000 times in RAEB2 and aligned at nine different positions, spread over six
chromosomes, on the human genome (green). A single alignment position is shown (red) with the used annotation hierarchy (blue). The purple
callbox, details the matched loci for miRNA let-7a-1, its full primary sequence (top), its mature sequence (middle) and the aligned short read
(bottom). The brown callbox shows all nine annotations, including a number of miRNAs from the has-let-7 family as well as a piRNA. In B) we
compare the total RNA content measured from our high-throughput sequencing and annotation steps, on the left results for the RAEB2, in the
middle results for RA and on the right results for control.
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solution, the entire reaction mixture was incubated as
follows: 1 minute at 4°C, 10 minutes at 30°C, 60 minutes
at 42°C, 10 minutes at 75°C, and cooled to 4°C. Then
the ST-cDNA was purified with the QIAGEN DNA
clearing kit. After the purification, fragmentation reac-
tion was carried out using FL-Ovation™ cDNA Biotin
Module V.2 according to the recommended methods.
Briefly, 5 μg of cDNA was mixed with the provided
enzyme mix and incubated 30 minutes at 37°C and 2
minutes at 95°C. Then the reaction was cooled to 4°C.
Next, the reaction was subjected to the labeling reaction
as suggested by the manufacturer. The fragmented
cDNA was mixed with labeling reaction mix and incu-
bated at 37°C for 60 minutes and 70°C for 10 minutes.
Then, the reaction was cooled to 4°C and used immedi-
ately for array hybridization. For the array hybridization,
instead of recommended by Affimatrix, we used the
standard array protocol provided by the NuGEN exon
module. For hybridization, Chips were incubated in
Gene Chip Hybridization Oven 640 and underwent the
washing and staining processes according to the
FS450_0001 fluidic protocol. Then, the array was
scanned using Gene Chip Scanner 3000 (GCS3000).
The exon arrays for control, RA and RAEB2 were

loaded into the Partek Genomics Suite 6.5. The Robust
Multi-array Analysis (RMA) algorithm was used for
initial intensity analysis [21] (Additional file 4). We gen-
erated gene expression estimates by averaging the inten-
sities of all exons in a gene. Differential expression was
defined as discussed for the NGS analysis above.

Integrated target genes for MDS
In an earlier study Pellegatii and colleagues [22] used an
Affymetrics Human Genome U133 Plus 2.0 GeneChip
to assay consistently differentially expressed genes in
hematopoietic stem cells (HSC) of 183 patients com-
pared to 17 HSC of normal controls. This identified 534
probesets for RA and 4670 from RAEB2 patients. We
matched these probesets to gene symbols and identified
their corresponding transcript IDs on the Exon Gene-
Chip. For the RA gene list, 69 probesets did not have
annotated gene symbols, 103 had no corresponding
transcripts and for 431 matching IDs were found. For
the RAEB2 gene list, 807 probesets had no annotation,
1009 had no matching transcripts and for 3661 match-
ing IDs were found. Altogether, this created a target
gene space of 4092 probesets that were further analyzed
by our bioinformatics modeling approach.

Secondary structure and location of novel miRNA*
sequences
The secondary structures for all miRNAs with stem-loop
sequences deposited in miRBase were calculated using
the Matlab Bioinformatics toolbox (version R2009a).

The locations of mature miRNAs were identified as per-
fect alignments between the stem-loop and mature
miRNA sequence. We calculated the locations of novel
miRNA* sequences based on the genome coordinates of
aligned small RNA reads. We note that due to mis-
matches in the miRBase alignments, e.g. between the
miRNA stem-loop and the human genome, some deri-
vations between the small RNA sequencing reads and
the deposited stem-loop sequences may exist. All infor-
mation was visualized using the tool VARNA [23].

Prediction of miRNA-mRNA and miRNA*-mRNA pairs
Information on miRNA target genes was obtained from
two popular and publicly available miRNA target predic-
tion databases. We retrieved flat files for all predicted
human miRNA targets available in miRanda [24] and
targets conserved over different mammalian species
from targetscan [25]. In order to reduce the number of
false positive predictions we considered only targets pre-
dicted by both algorithms, which resulted in about
110.000 miRNA-mRNA pairs.
In theory the majority of miRNA* are degraded in the

cell. Therefore, we restricted our analysis to sequences
with minimum read counts of 100. In each case, we
define a 7-mer nucleotide sequences based on the small
RNA read with the highest copy number throughout the
control, low and high risk MDS samples. The nucleotides
at positions two to eight were extracted and transformed
into the RNA alphabet. The seed regions were checked
for overlap with other known miRNA and miRNA*
sequences and the targetscanS algorithm was used to
predict miRNA*-mRNA pairs, if the seed sequence was
previously unreported. In general, this algorithm per-
forms target predictions based on perfect and conserved
matches between the genes untranslated region (UTR)
and the first six nucleotides of the seed sequence. It
further requires that the seed region is followed either by
the nucleotide A (known as a t1A anchor) or that the
position eight of the alignment contains a perfect Wat-
son-Crick pairing. On contrast, if the seed sequences
matched with a previously reported miRNA or miRNA*,
we used the target prediction strategy as reported above.

Prediction of transcription factor target genes
The flat files FACTOR and GENE of the commercially
available database TRANSFAC v2008_2 [26] were down-
loaded and parsed into a MySQL database. The FAC-
TOR and GENE flat files contain information on
transcription factor proteins and genes regulated by
transcription factors, respectively. A total of 2362 regu-
lating factors for the human species (Homo Sapiens)
were extracted and 70 entries, that did not describe pro-
teins, but other regulatory factors were omitted. A large
fraction (about 77 percent) of the remaining 2292
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transcription factor proteins were mapped to Uniprot
[27], either by external database ID’s, or exact matches
between protein names. With these accessions the pro-
tein coding gene IDs, as well as other information was
downloaded automatically via a MATLAB based data
retrieval algorithm implemented for this study. The
transcript and probeset annotation files for the Affyme-
trix GeneChip Human Exon 1.0 ST Array were down-
loaded from the manufacture’s website http://www.
affymetrix.com and parsed into MySQL tables. Tran-
script IDs for 98 percent of the human transcription fac-
tor coding genes were extracted based on direct matches
between gene names.
Genes that can potentially be up regulated when the

transcription factor protein binds to a specific site in its
promoter region are called transcription factor target
genes. We extracted all target genes for human tran-
scription factor proteins by joining a number of data-
base tables. This revealed 3296 gene targets for the 2292
transcription factor proteins. We used direct matches
between the target gene names, as well as additional
entries, to identify corresponding transcripts on the
Affymetrix GeneChip. This resulted in matches for 83
percent of the target genes.

Functional analysis for miRNA and miRNA* targets
The functional analysis of miRNA and miRNA* were
performed by means of their predicted target genes.
However, since the pools of potential target genes are
large and suffer from high false positive rates, we

selected only a limited set of genes for functional analy-
sis. Therefore, we defined a threshold T describing the
number of different miRNA or miRNA* that regulate a
gene. Similar to many biological phenomena such func-
tions are described by power laws (see Figure 2) and we
aimed to select T in the exponential part of the func-
tion. This ensured that the selected genes were targeted
by a large number of different miRNAs. We further
tried to select at most 100 genes for the analysis. In
each case, the selected target genes were imported into
Ingenuity Pathway Analysis (IPA) version 8.5 and ana-
lyzed using the IPA Core Analysis algorithm.

Data integration model and detection of important gene
regulators
The proposed data integration model assumed that the
mRNA amount present in a cell at any given time is line-
arly depended on the concentration of transcriptional
acting TFs and post-transcriptional acting miRNAs.
Therefore, gene expression was modeled as a linear com-
bination of these factors plus random noise, which can
be expressed following a standard regression model [28]

y xi
p p

i

p

N

= + +
=

∑  0

1

(1)

where yi is the expression of gene i, i = 1,..., G with G
being the number of genes under study, (b0,..., bN) are
the regression coefficients to be estimated by our model,

Figure 2 Threshold for miRNA/miRNA* target gene selection. This figure describes the number of genes (x-axis) that are targeted by
different miRNA*s (y-axis), for the example of RA cells. In this particular case, we selected the threshold T to be 13 miRNAs and 93 different
genes were selected for functional analysis.
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N sums up the number of TFs and miRNAs observed in
the cells under study, ε is the noise term which is
assumed an independent Gaussian random variable with

expectation zero and variance s2, xp
i was defined as

xp
i

p
i

p p=    (2)

where xp
i is a factor associating gene i with regulator

p, gp is a regulation characteristic and δp the expression
level of regulator p. The association xp

i was determined
by miRNA and TF target prediction and xp

i was set to
one if gene i was a target of regulator p, otherwise xp

i

was set to zero. Transcription factors generally contri-
bute to transcription and hence higher target genes
levels, therefore, gp was set to one if p was a TFs. On
contrast, miRNAs are known to post-transcriptionally
degrade mRNAs, hence gp was set to minus one if p was
a miRNA. The expression levels δp were determined by
experiments as discussed earlier. Note that all expres-
sion values were normalized to controls and standar-
dized to mean zero and standard deviation one.
The above regression problem was solved using the

recently proposed cyclical coordinate descent algorithm,
which is based on an elastic net penalty [29]. This algo-
rithm is particularly fast and the elastic net penalty is
most appropriate to handle large and sparse problems
(compare Additional file 5 Figure S1) of correlated
inputs. In addition, it has the beneficial property of
shrinking a number of predictor values bp to exactly
zero, hence integrating an effective variable selection
approach, otherwise computationally expensive [30].
Note, that the penalty is weighted and that these
weights were determined by cross validation.

Results and Discussion
Defining the small RNAome of Myelodysplastic
Syndromes by next generation sequencing
We performed high-throughput next generation sequen-
cing of small RNAs (RNA-seq) on primary cells from con-
trol, low-grade (RA) and high-grade (RAEB2) MDS patients
on an Illumina Genome Analyzer IIx (see Methods). This
resulted in about thirteen million short sequence reads
(length 38 bp) per sample. We implemented an annotation
algorithm that integrates knowledge from diverse biological
databases to characterize each RNA-seq read (Figure 1). In
brief, all reads were trimmed (length 22 bp) and aligned
against the current version of the human genome
(GRCh37), using the publicly available software Bowtie
[19]. We allowed for at most two mismatches between the
reference and read sequences. Since, the analyzed reads
were relatively short and we allowed mismatches, a large
number aligned to multiple genome positions (green part

Figure 1). Consistent with previous analyses, we decided to
discard reads having more than 25 alignment positions
[31]. For annotation, we matched small sequencing reads to
a set of small RNAs that included miRNAs from miRBase
[32], a number of other small RNAs, including tRNAs and
rRNAs, from the RepeatMasker track of UCSCs genome
browser [33], as well as piRNAs from the NCBI database
http://www.ncbi.nlm.nih.gov (blue callout box Figure 1).
This mapping showed that the composition of the small
RNAome was dramatically different from the analyzed
samples, suggesting a shift in the regulation of small RNA
targets during the progression of this disease.
First, the relative amounts of tRNA to rRNA were signif-

icantly larger in RAEB2 compared to RA and control (36
vs. 1.6 and 1). Since tRNAs are vital building blocks for
protein synthesis and required during translation, this may
indicate an increased regulation of translation at this dis-
ease stage. A recent study based on tRNA microarrays
reported a 20-fold elevation of tRNAs in tumor samples
versus normal samples [34]. In addition, tRNAs have been
shown to inhibit cytochorme c activated apoptosis [35,36].
Taken together, the high tRNA content may contribute to
the two well known characteristics of high-grade MDSs,
decreased apoptosis (in contrast to low-grade MDS) and
high rate of leukemia transformation. To our knowledge,
this novel finding has not been reported for MDS, high-
lighting the combined use of next generation sequencing
and the proposed annotation methodology.
Next, the obtained sequencing data demonstrated the

first evidence of piRNA expression in marrow cells, and
particular enrichment in low-grade MDS. Piwi-interact-
ing RNAs are a relative newly defined class of none cod-
ing RNAs with length from 26 to 32nt [37,38]. In RA
their expression increased, accounting for about nine
percent of total sRNA counts, compared to about two
and one percent in RAEB2 and controls, respectively.
The biogenesis of piRNA is not fully understood today,
but increasing evidence pinpoints that PIWI proteins
are required for the accumulation of piRNAs [39-42]. In
accordance with this concept, our exon array data
showed that piwil1 and piwil2, two of the four human
PIWI coding genes, were significantly up-regulated in
RA, compared to control and high-grade MDS cells.
Furthermore, recent studies have indicated that the
PIWI-piRNA complex may have a role in post-transcrip-
tional silencing damaged DNA fragments [39,43,44] and
that interrupting PIWI-piRNA formation can lead to
DNA double strand breaks [45]. Altogether, these find-
ings suggest that piRNA might be used as diagnostic
markers for low-grade MDS, however, further studies of
their role in MDS pathogenesis are warranted.
Finally, we found an increased regulatory role of miRNAs

in cells of RA and RAEB2 patients. In low-grade MDS
miRNAs represented about 35 percent of the total sRNAs,
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an almost 4-fold increase compared to control, highlighting
their role in disease pathogenesis. Similarly, miRNA per-
centages were elevated to about 14 percent in RAEB2 com-
pared to control, although at a lower extent (two-fold
increase). Of note, miRNAs are currently the most widely
studied species of sRNAs and they are known to influence
mRNA levels as well as translation. Due to their profound
effects, the above findings, and taken into account insuffi-
cient literature on miRNAs in MDS, we decided to further
investigate and discuss their roles in MDS.
Sequencing of additional RNAomes is required to con-

firm the observed trends over a larger patient
population.

Detailed characterization of expressed miRNA loci and
identification of novel miRNA*
In the analyzed samples, reads were found at 246 differ-
ent full-length primary miRNA sequence loci. These
included matches at 173 different mature miRNA sites
in RA, 93 in controls and 79 in RAEB2. Expression var-
ied between samples and was generally more elevated in
RA compared to RAEB2 (compare Figure 3 and Addi-
tional file 6 Tables S1,S2 and S3). The miRNA hsa-mir-
125b-2 was an exception and more elevated in RAEB2
(read counts: 264 RAEB2, 87 RA and zero in controls).
A single miRNA, hsa-mir-720 (fold change 10), was sig-
nificantly down-regulated in RA and no copies were
detected in RAEB2. Furthermore, a total of 58 miRNAs
were only expressed in RA (Additional file 6 Table S4),
hsa-mir-191 was unique to controls and hsa-mir-9-3
was only detected in RAEB2.
A number of high-throughput sequencing studies have

recently reported the detection of miRNA*, often with
higher copy numbers than their mature counterparts
[46,47]. These studies further suggest that miRNA*
associate with the effector complex AGO1 and regulate
target gene expression. However, their roles in MDS
have never been studied and we found reads matching
to miRNA* motifs on 68 loci in RA, 55 in control and
24 in RAEB2 cells. In addition, multiple reads matched
to uncharacterized positions on 59 different primary
miRNA sequences. Interestingly, no miRNA* motifs had
been reported for these loci before. Therefore, we visua-
lized the secondary structure for their primary sequence,
the location of the mature sequence and the reads clus-
tered at uncharacterized loci (see Figure 4 Methods and
Additional file 6 Table S5). Our bioinformatics analysis
showed that most uncharacterized reads aligned on the
miRNA* arm, opposite to the mature sequence. This
has led to the definition of 59 previously unreported
miRNA* candidates, of which 20 seed sequences have
previously been associated in the targetscan database
[48], but which did not exist in the miRBase version
(v14) used for this study. We classified the remaining 39

motifs as novel miRNA* sequences (miRNA**) and fold-
ing information with locations on the miRNA arms are
given in Additional file 6 Table S5.
Considering all samples together, significant expres-

sion was detected (read count at least 100) for 128
miRNA*, including 123 miRNA* in RA, 72 in control
and 31 in RAEB2. Interestingly, in our RNA-seq data
either the miRNA or the miRNA* (including miRNA**)
arms were expressed at many miRNA loci (Additional
file 5 Figure S2), suggesting a non-random and selective
expression of the two different miRNA arms. Impor-
tantly, we found that 24 miRNA* were only expressed in
RA, hsa-mir-24-1* was unique to control (copy number:
119) and no miRNA* was uniquely expressed in RAEB2.
These miRNA* can potentially be used as biomarkers to
diagnose low-grade MDS, which has significant overlap-
ping morphologic and clinical features with reactive
cytopenias, and is consequently very difficult to diag-
nose. However, further validation in additional patients
and with different methods is needed to confirm these
findings. Details for the ten miRNA* with the greatest

Figure 3 Comparison of miRNA expression. A heat map of the
log2 transformed expression levels for miRNAs and miRNA* in the
three analyzed samples.
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fold changes in RA are given in Table 1 further informa-
tion can be found in Additional file 6 Tables S1 and S4.

Functional roles of miRNA and miRNA* in Myelodysplastic
Syndromes
In order to identify biological functions that might con-
tribute to low-grade MDS, and can be modulated by the
detected miRNA/miRNA*, we first identified target
genes for 91 miRNA and 104 miRNA* that were highest
expressed in RA, compared to RAEB2 and control mar-
row cells. The total number of uniquely regulated
mRNAs was 7021 for miRNA* and 4665 for miRNA
(see Methods). To select high confidence targets, each
gene was further ranked according to the number of
miRNAs or miRNA* that potentially control its expres-
sion or translation (see Methods). This was necessary to
counteract the high false positive rates of in-silico
miRNA target predictions, which for example do not
consider tissue specificity. From this ranking two gene
sets (Table 2), the first consisting of 74 genes controlled

by 19 miRNAs and the second consisting of 93 genes
regulated by at least 14 miRNA*, were selected to com-
pare significantly enriched molecular and cellular func-
tions (Methods). Interestingly, four out of the top five
functions, with the smallest p-values, overlapped. These
included “Cell Death”, “Cellular Development”, “Cell
Cycle” and “Gene Expression” (Table 2). The high com-
patibility suggested that the detected miRNA* fulfill
similar roles to their mature counterparts, providing
further evidence of their selectivity and biological
importance.
To study the overall role of miRNA/miRNA* in RA

and RAEB2 cells, their target genes were combined for
further analysis. In RA, we included 94 genes regulated
by at least 27, and in RAEB2 a total 83 genes targeted
by at least three different miRNA/miRNA*. The differ-
ence in the required number of regulating miRNA/
miRNA* were attributed to the higher number of differ-
entially expressed miRNA in RA (compare Additional
file 5 Figure S3).

Figure 4 miRNA* analysis pipeline. Analysis pipeline for the visualization of novel miRNA* from small RNA sequencing reads aligned to
uncharacterized loci on known primary miRNA sequences.

Beck et al. BMC Medical Genomics 2011, 4:19
http://www.biomedcentral.com/1755-8794/4/19

Page 8 of 16



Next, we identified significantly enriched molecular
and cellular functions (Methods) and compared results
with a recent large scale gene expression study of 183
MDS patients [22].
In both disease grades the selected genes were

enriched for the molecular function of “Cell Death” (RA:
9.86E-06, RAEB2: 1.75E-04). This is in agreement with
the above study, which identified apoptosis as the main
deregulated process in low-grade MDS.
Again consistent with the cited study, miRNA/

miRNA* targets selected in both MDS subtypes were

enriched for “DNA Replication, Recombination, and
Repair “ (RA:1.12E-03, RAEB2: 6.67E-03).
In addition, cell cycle regulatory genes were among the

indentified target genes for both, RA and RAEB2. In accor-
dance with the study cited above, we found that the “G2/M
phase” (RAEB2:1.55 E-3) and “DNA damage checkpoint”
(RAEB2: 6.67E-3) were exclusively regulated in RAEB2. On
contrast the “G1 phase” (6.17E-06) was exclusive to RA.
These findings showed that miRNA/miRNA* interfere

with molecular functions and pathways known to be
deregulated at the transcriptomic level, as reported in the

Table 1 Differentially expressed miRNA* and their target genes

ID fold pval miRNA* target genes (regulation)

mir-
374b*

1613 5.44E-
01

HMGN2(↓),ZNF362(↑),LRRC8D(↓),NAV1(↑),ENAH(↓),SERBP1(↑),ENSA(↑),CDC42BPA(↑),SOCS5(↑),ANXA4(↓),CNNM4(↑),TLK1(↓),TFRC(↑),
SMAD1(↑),PPARGC1A(↑),RCHY1(↓),HNRNPD(↓),PAM(↑),PURA(↑),RNF138(↑),YIPF5(↓),ANKRD6(↑),SCML4(↑),FAM160B2(↑),IKBKB(↑),PLAG1
(↑),C9orf3(↓),ZFAND5(↓),SCD(↑),PTPRE(↓),SH3PXD2A(↑),SYT9(↑),RCC2(↓),OSBPL5(↑),CALCA(↑),HNRNPA1(↓),SIRT4(↑),HECTD1(↓),TRIM9
(↑),TRMT5(↓),DUT(↑),LRRK1(↑),C15orf38(↓),ZFHX3(↑),FAM64A(↓),SMAD2(↑),SMAD7(↓),ZNF516(↓),MACROD2(↑),STX16(↓),ZBTB46(↑),
RUNX1(↓)

mir-
374a*

1583 1.52E-
02

ZBTB40(↑),PTGER3(↑),NEGR1(↑),PCYOX1(↓),RANBP2(↓),DUSP19(↑),MGAT4A(↓),TFPI(↑),TNS1(↑),ZNF662(↑),PHLDB2(↑),EAF2(↓),DCK(↑),
BMPR1B(↑),CAMK2D(↑),MTRR(↓),AFF4(↓),PHACTR2(↑),TULP4(↑),RNGTT(↓),KPNB1(↑),DPY19L4(↑),CCNE2(↑),CDC42(↑),PPP1R16A(↑),DLC1
(↑),MTUS1(↑),ANKRD46(↑),TRPS1(↓),SAMD12(↑),ATAD2(↓),NFIB(↑),CUGBP2(↓),BCCIP(↑),SH3PXD2A(↑),RAG1(↑),RNF141(↓),CTSC(↓),
KDELC2(↑),PARP11(↓),FRYL(↑),LYRM5(↓),NFE2(↑),XPO4(↓),EXOC5(↓),AFF1(↑),NOVA1(↑),SPTLC2(↓),CTDSPL2(↓),CCPG1(↓),NFAT5(↓),
SMPD3(↑),STAT3(↓),MEX3C(↓),VASP(↓),MAPRE1(↓),RBL1(↑),REPS2(↓),MED13L(↑)

mir-
126*

1253 4.40E-
01

PRDM16(↑),KIF1B(↓),CHD1L(↓),PBX1(↑),ATP1B1(↑),PPP1R12B(↑),SNX25(↑),RPS6KC1(↑),TBCE(↑),LDLRAD2(↑),TMEM200B(↑),ZMYM6(↑),
PTGER3(↑),NEGR1(↑),SASS6(↓),CEPT1(↑),ARNT(↓),GATAD2B(↓),KIF14(↑),NCOA1(↓),PPM1B(↓),ZAK(↑),STAM2(↓),CALCRL(↑),ALS2CR4(↑),
ARL4C(↑),PHLDB2(↑),EIF2A(↓),MME(↓),EIF4A2(↓),GMPPB(↑),TMEM33(↓),EREG(↓),CCDC13(↑),BBS12(↓),PPARGC1A(↑),BTC(↑),TGFBI(↑),
NDFIP1(↓),REEP5(↓),FOXF1(↑),UTRN(↑),ICK(↑),SRrp35(↓),AHR(↓),TRIP6(↑),LUC7L2(↓),HOXA7(↑),TFEC(↑),CHCHD3(↑),PTPRN2(↑),XKR6(↑),
PSD3(↑),PLAG1(↑),FABP4(↑),MMP16(↑),TRPS1(↓),FAM120A(↓),ZFAND5(↓),AKNA(↑),CUGBP2(↓),SCD(↑),TRIM8(↓),HIPK3(↓),AASDHPPT(↓),
PHF21A(↓),APOLD1(↑),FRYL(↑),LYRM5(↓),GALNT4(↑),XPO4(↓),COMMD6(↓),POU4F1(↑),C14orf39(↑),TERF2(↓),HS3ST3B1(↑),MLLT6(↓),
YPEL2(↓),PRKCA(↑),SEC14L1(↓),GJC1(↑),HOXB2(↓),HOXB5(↑),SOCS6(↓),KIAA0355(↑),MYT1(↑),JAG1(↑),C20orf12(↑),ERG(↓),ZNF74(↓),
MGAT3(↓),ST13(↓),REPS2(↓),ARMCX3(↓),NLGN4X(↑),MED13L(↑)

mir-
106a*

1176 3.36E-
02

CAMTA1(↑),MIER1(↓),HIPK1(↓),ENAH(↓),LUZP1(↓),GATAD2B(↓),CDC42BPA(↑),EPC2(↓),ARL4C(↑),HEG1(↑),ZFYVE28(↑),SGTB(↓),PURA(↑),
SH3TC2(↑),RANBP9(↓),ICK(↑),KPNB1(↑),UBE2W(↑),RBM12B(↑),COL5A1(↓),ANKS6(↑),YME1L1(↓),PTPRE(↓),SEPHS1(↓),PLEKHA7(↑),MBD6
(↓),KRAS(↓),SLAIN1(↑),XPO4(↓),GNPTG(↓),GINS3(↓),SSH2(↓),C18orf1(↑),HNRNPM(↑),NFIX(↑),ZNF473(↑),RBM39(↓),C22orf13(↓),RAC2(↓)

mir-
10a*

1134 3.43E-
01

PRDM16(↑),PBX1(↑),DBT(↑),CNNM4(↑),ARPP21(↑),TAPT1(↓),CYFIP2(↓),VDAC1(↓),DBN1(↑),C7orf58(↑),C7orf31(↑),MAGI2(↑),UQCRB(↓),
NFIB(↑),RAG1(↑),DENR(↓),KRAS(↓),ACOX1(↓),SMCHD1(↓),STX16(↓),REPS2(↓),XK(↑),COL4A5(↑)

mir-
598**

733 1.92E-
01

PHF21A(↓)

mir-
20b*

672 1.00E-
01

STX12(↓),LEPR(↑),MAN1A2(↓),ANP32E(↓),PREPL(↑),SPTBN1(↓),TOP2B(↓),TBL1XR1(↓),BBS12(↓),UBE2D2(↓),FBXL17(↑),RANBP9(↓),BACH2
(↑),DMTF1(↓),INPP5F(↑),AMOTL1(↑),PAFAH1B2(↓),PIP4K2C(↓),PACS2(↑),HECTD1(↓),TRIM9(↑),CTDSPL2(↓),TBC1D2B(↓),GINS3(↓),DNAJA2
(↓),ANKRD11(↓),CDC6(↑),TWSG1(↑),NUMBL(↓),RP5-1022P6.2(↓)

mir-
195*

557.6 2.50E-
02

PPP1R12B(↑),SERBP1(↑),NEGR1(↑),RSBN1(↓),ARNT(↓),CDC42BPA(↑),C1orf96(↑),CENPO(↑),BCL2L11(↓),RAB1A(↓),WDR33(↓),ACVR1(↑),
TLK1(↓),PPP2R5C(↓),ATP2C1(↑),MME(↓),KCNMB2(↑),LRIG1(↑),SUCLG2(↑),RAB6B(↑),DGKG(↑),HIGD1A(↑),C4orf29(↑),PPP1R14B(↓),UBE2B
(↓),SEC24A(↓),PURA(↑),FYB(↓),SEMA6A(↓),VDAC1(↓),TUBB(↓),NCOA7(↑),ZNF323(↑),ICK(↑),AHR(↓),SEMA3C(↑),FAM133B(↑),EPHB4(↑),
TFEC(↑),PAXIP1(↑),PLAG1(↑),PAG1(↓),TRPS1(↓),SLC31A1(↓),LINGO2(↑),AKNA(↑),HSPA5(↓),C10orf119(↑),AMOTL1(↑),AASDHPPT(↓),
PHF21A(↓),MRE11A(↓),BTG1(↓),CUL4A(↑),GNG2(↓),DACT1(↑),MPP5(↓),CFL2(↓),C14orf39(↑),ATP10A(↑),CCPG1(↓),GJC1(↑),SFRS2(↓),YES1
(↓),OAZ1(↓),SIN3B(↑),BTG3(↑),ZNF280B(↑),CSNK1E(↓),ZFX(↓),STAG2(↓),BCOR(↓),ODZ1(↓),MED13L(↑)

mir-16-
1*

533.7 4.53E-
02

SPEN(↓),KIAA0495(↑),COL24A1(↑),PTPN22(↓),CD34(↑),FAM84A(↓),SLC5A7(↑),BCL2L11(↓),ARL6IP6(↓),UBE2E3(↓),COQ10B(↓),ABI2(↑),
RAB1A(↓),SPRED2(↑),SCN2A(↑),STK39(↓),ALS2CR4(↑),TNS1(↑),ARL4C(↑),CDV3(↓),KCNMB2(↑),ANKRD28(↓),CDC25A(↑),KPNA1(↓),TBL1XR1
(↓),KLF3(↓),FRAS1(↑),PPARGC1A(↑),EBF1(↑),MAPK14(↓),ZNF323(↑),BACH2(↑),CBX3(↓),NOD1(↑),RNF133(↑),CCNE2(↑),PAG1(↓),TP53INP1
(↓),UQCRB(↓),SAMD12(↑),PALM2(↑),FUBP3(↑),PTEN(↓),HSPA5(↓),CUGBP2(↓),SUV39H2(↑),DDX21(↓),SCD(↑),RASSF4(↑),PDE3B(↓),CUL5
(↓),ETS1(↑),FRYL(↑),KLF5(↓),FOXO1(↓),WDR76(↑),CCPG1(↓),SMPD3(↑),USP6(↑),MLLT6(↓),HLF(↑),SEC14L1(↓),TOP2A(↑),C18orf1(↑),
ZCCHC2(↑),SMAD2(↑),ZNF516(↓),OAZ1(↓),MYT1(↑),JAG1(↑),RUNX1(↓),ZFX(↓),ZFY(↓),RBM3(↓),STARD8(↓),ODZ1(↓),NLGN4Y(↑)

mir-
503**

453 4.84E-
03

DBT(↑),MCL1(↓),ARHGEF2(↓),NCOA1(↓),SOCS5(↑),WDR33(↓),HIGD1A(↑),DHX15(↓),SLC12A2(↑),FNIP1(↓),SH3TC2(↑),GPR85(↑),TACC1(↓),
MMP16(↑),UBR5(↓),TRPS1(↓),ZFAND5(↓),SUV39H2(↑),KBTBD3(↑),SLC43A1(↑),BACE1(↑),SUOX(↑),MON2(↓),DYRK2(↑),FRYL(↑),SENP1(↓),
MLL2(↓),PCDH9(↑),CCNK(↓),IQGAP1(↓),AKT1S1(↓),MACROD2(↑),RP5-1022P6.2(↓),ZNF512B(↓),HSPA13(↓), STAG2(↓),NLGN4X(↑)

List of ten miRNA* (see Additional file 6 Table S4 for folding information) that were detected with the largest fold changes in control and low-grad cells. We
show the fold change, p-value (measuring if the number of down regulated target genes is greater than expected by chance) and target genes with regulation
(bold arrows mark significant and italic non-significant regulation). We assessed the significantly down regulated genes for functional enrichment and pathways.
The top five enriched biological functions included RNA Post-Transcriptional Modification (pval:1.2E-04), Cellular Growth and Proliferation (pval:1.25E-04), Cell
Death (pval:5.79E-04) and Cancer (pval:5.95E-04-). The top six enriched canonical pathways included IL-22 Signaling (pval:2.63E-04), p53 Signaling (pval: 8.32E-04),
IL-15 Signaling (pval:2.95E-03), B Cell Receptor Signaling (pval:4.47E-03) and FLT3 Signaling in Hematopoietic Progenitor Cells (pval:4.68E-03).
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cited gene expression study (some additional information
is given in Additional file 7). In the following we proposed
a bioinformatics modeling approach to further elucidate
the effects of miRNA/miRNA* on the MDS transcriptome.

Computational modeling of transcriptome regulation in
Myelodysplastic Syndromes
In the recent years it has become increasingly evident
that miRNAs and TFs coordinate to regulate mRNA
levels [49]. Consequently, we proposed a bioinformatics
model that accounts for both effects. It integrated
miRNA expression levels measured by next generation
sequencing, gene expression measured by exons arrays,
as well as data of a recently published gene expression
microarray study [22]. All datasets were linked using a
number of publicly and commercially available bioinfor-
matics databases (Methods). In particular, we focused
on the regulation of genes consistently differentially
expressed over a large patient pool, that can be

influenced by miRNAs/miRNAs* and TFs detected in
our samples. The general workflow is illustrated in Fig-
ure 5 and we briefly describe the main aspects below
(more information is given in the Methods section and
Additional file 5 Figure S4).
The analysis started with miRNA profiling in samples

of RA and RAEB2 patients by next generation sequen-
cing, as discussed earlier.
In addition, we measured gene expression and splice

form variations using the Affymetrix GeneChip Human
Exon 1.0 ST Array. In an earlier study the bone marrow
of 55 RA and 43 RAEB patients were compared against
17 controls and genes collectively differentially
expressed explored [22]. These differentially expressed
genes were merged with the exon array profiling (Addi-
tional file 5 Figure S5) and a set of 385 RA and 2795
RAEB2 genes was constructed.
Again, bioinformatics databases were used to map

between the obtained gene lists and interacting miRNAs

Table 2 Enriched biological processes of miRNA and miRNA* target genes

biological
processes
(pval)

Cell Death
(1.84E-06)

Cellular Development
(3.93E-06)

Gene Expression
(8.34E-06)

Cell Cycle
(1.05E-04)

Cellular Function and
Maintenance
(1.05E-04)

involved
genes

ACVR2B,BACH2 (includes
EG:60468), CCDC6, E2F3,
EGR3, HMGA2, IGF1, IGF1R,
IKZF2, IRS2, MECP2, MIB1,
NLK, NOVA1

CCDC6, CHD7, CNOT6L,
DYRK1A, E2F3, EGR3,
ESRRG, FNDC3A,
HMGA2, IGF1, IGF1R,
IGF2BP1, IRS2, MECP2,
MIB1, MLL2, NLK,
ONECUT2

ACVR2B, ATXN1, BACH2
(includes EG:60468), BAZ2A,
BRWD1, CEP350, E2F3,
EGR3, ESRRG, HMGA2, IGF1,
IGF2BP1, JARID2, KLF12,
MECP2, NFAT5, NFIB, NLK,
ONECUT2

E2F3, ESRRG, IGF1, IGF1R,
IRS2, JARID2

CLCN5, EGR3, IGF1, IGF1R,
IRS2

selected
genes
(miRNA)

ACVR2B (↑),ADAMTS6 (↑),ANKRD52 (↓),ARPP-19 (N/A),ATXN1 (↑),BACH2 (↑),BAZ2A (↓),BRWD1 (↓),CCDC6 (↑),CEP350 (↓),CHD7 (N/A),CLCN5 (↑),
CNOT6L (↑),CPD (↓),CPEB2 (↓),CPEB3 (↑),CPEB4 (↓),CSNK1G1 (↑),DCBLD2 (↑),DYRK1A (↓),E2F3 (↓),EGR3 (↓),EIF2C1 (↑),ESRRG (↑),ETNK1 (↓),FIGN
(↑),FNDC3A (↓),GLT8D3 (↓),HIC2 (↑),HMGA2 (↓),IGF1 (↑),IGF1R (↓),IGF2BP1 (↑),IKZF2 (↓),IRS2 (↓),ITGB8 (↑),JARID2 (↓),JHDM1 D (N/A),KLF12 (↑),
LIN28 (↑),LIN28B (↑),MECP2 (↓),MIB1 (↑),MIER3 (↓),MLL2 (↓),NFAT5 (↓),NFIB (↑),NLK (↓),NOVA1 (↑),NRK (↑),ONECUT2 (↑),OTUD4 (↓),PALM2 (↑),
PAPD5 (↓),PBX3 (↓),PGM2L1 (↑),PLAG1 (↑),PLAGL2 (↓),PTPRD (↑),PURB (↓),QKI (↓),RNF165 (↑),RNF38 (↓),RPS6KA3 (↓),SNX16 (↑),SOCS6 (↓),SP1 (↓),
SRGAP3 (↑),TBL1XR1 (↓),TGFBR1 (↓),TMCC1 (↑),TNRC6B (↓),ZBTB34 (↓),ZFHX4 (↑)

biological
processes
(pval)

Gene Expression
(2.02E-09)

Cell Cycle
(3.12E-05)

RNA Post-Transcriptional
Modification
(3.14E-05)

Cell Death
(3.43E-05)

Cellular Development
(5.40E-05)

involved
genes

ACVR2B, BACH2 (includes
EG:60468), BCL11B, BMPR2,
CBL, CREBZF, CTDSP2,
DDX6, ESRRG, FGF7,
FOXN3, HIPK2, HLF
(includes EG:3131), IGF1,
KLF12, MAF, MECP2, MEF2
D, MTF1, NFAT5, NFIB,
ONECUT2, PBX1, PURB,
SMAD4, SOX11, SP1,
TEAD1, THRB, TRPS1,
ZNF148

CBL, DCX, ESRRG, FGF7,
FOXN3, IGF1, IGF1R,
RPS6KA3, SMAD4, SP1,
THRB

CNOT6L, CUGBP2, MBNL1,
NOVA1, SFRS1

ACVR2B, BACH2 (includes
EG:60468), BCL11B, BMPR2,
CBL, CREBZF, CTDSP2,
DDX6, ESRRG, FGF7,
FOXN3, HIPK2, HLF
(includes EG:3131), IGF1,
KLF12, MAF, MECP2, MEF2
D, MTF1, NFAT5, NFIB,
ONECUT2, PBX1, PURB,
SMAD4, SOX11, SP1,
TEAD1, THRB, TRPS1,
ZNF148

ACVR2B, BCL11A, BCL11B,
BMPR2, CBL, CNOT6L,
COL11A1, DCX, DYRK1A,
ESRRG, FGF7, HIPK2, IGF1,
IGF1R, KCNMA1, MAF,
MARCKS (includes
EG:4082), MBNL1, MECP2,
MEF2 D, MLL2, NDST1,
ONECUT2, PBX1, PLAG1,
RC3H1, SMAD4, SP1, THRB,
ZFX

selected
genes
(miRNA*)

AAK1 (↓),ACVR2B (↑),ADCY1 (↑),AFF2 (↓),ANKS1B (↑),ARHGEF12 (↑),BACH2 (↑),BCL11A (↑),BCL11B (↓),BMPR2 (↑),BNC2 (↑),BSN (↑),C1orf21 (↑),CBL
(↓),CNOT6L (↑),COL11A1 (↑),CPEB2 (↓),CREBZF (↓),CTDSP2 (↓),CUGBP2 (↓),DCX (↑),DDX6 (↓),DYRK1A (↓),ENAH (↑),ESRRG (↑),FGF7 (↑),FLJ20309
(N/A),FOXJ3 (↓),FOXN3 (↓),GATAD2B (↓),HELZ (↓),HIPK2 (↓),HLF (↑),HNRNPU (↓),IGF1 (↑),IGF1R (↓),IKZF2 (↓),JHDM1 D (N/A),KCMF1 (↓),KCNMA1
(↑),KLF12 (↑),LPHN2 (↑),MAF (↑),MAPK1IP1L (↓),MARCKS (↓),MBNL1 (↓),MECP2 (↓),MEF2 D (↓),MEX3A (N/A),MLL2 (↓),MTF1 (N/A),MYT1L (↑),NAV1
(↑),NDST1 (↑),NFAT5 (↓),NFIB (↑),NOVA1 (↑),NUFIP2 (↓),ONECUT2 (↑),PBX1 (↑),PHF15 (↑),PLAG1 (↑),PTPRD (↑),PURB (↓),RC3H1 (N/A),RIC8B (↑),
RPS6KA3 (↓),SAMD12 (↑),SERBP1 (↑),SFRS1 (↓),SHANK2 (↑),SLC5A3 (↓),SMAD4 (↓),SMG1 (↑),SOX11 (↑),SP1 (↓),SPOPL (↓),STXBP5L (N/A),TEAD1 (↑),
THRB (↑),THSD7B (N/A),TMEM170B (N/A),TNRC6B (↓),TRPS1 (↓),UBL3 (↓),ZC3H12C (N/A),ZCCHC24 (↑),ZFAND5 (↓),ZFHX4 (↑),ZFX (↓),ZNF148 (↓),
ZNF609 (N/A),tcag7.1228 (N/A),

This tables gives an overview of the selected miRNA (top) and miRNA* (bottom) target genes, their regulation (bold is used for significant expression and italic
for non-significant expression), the top five molecular functions of these genes as well as the genes involved in these functions.
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and TFs. This identified about 10.000 possible interactions
between 217 miRNA (94 miRNA and 123 miRNA*), either
expressed in RA or RAEB2, and their corresponding genes.
In a similar step all known human TF proteins and

their validated promoter targets were identified. Next,
their coding genes were determined using a retrieval
algorithm which automatically queries the Universal
Protein Resource [27]. The coding gene IDs were then
mapped to Affymetrix transcript IDs to obtain gene
expression levels from the analyzed exon array. After
TFs with low expression levels were erased, 198 TFs
with 465 validated interactions to the described MDS
gene pool could be identified.
However, 1073 genes could not be associated with an

expressed miRNA nor a TF, and thus potential second-
ary targets were omitted from further analysis.
The obtained expression levels for all miRNA/

miRNA*, TF and genes were normalized to their respec-
tive controls and then standardized to a mean of zero
and a standard deviation of one.
To develop a bioinformatics model for gene expression

regulation, we assumed that the mRNA amount, present
in a cell at any time, is linearly dependent on its positive
acting TFs and negative acting miRNAs [50,51]. Hence,
the mRNA amounts can be modeled as a linear combina-
tion of the standardized expression levels of miRNAs and
TFs. Note that all expression measures for genes, miRNA
and TF were acquired from marrow cells of the same
patients, whereas the other mentioned studies relied on
expression levels from multiple studies of different tissues.
The resulting model for RA consisted of 1640 equa-

tions to represent each RA gene and 415 predictors
(regulators, e.g. miRNA and TFs). For RAEB2 we used
1216 equations and 290 predictors.
In spite of the huge variable space, we were interested

to determine how much each regulator contributes to
the expression of the analyzed genes. This is a particular
large regression problem and our input data, similar to
other biological measurements, was highly correlated. In
addition, the average number of miRNA and TF regula-
tors per gene was small compared to the variable space

(see Additional file 5 Figure S6), leading to a set of
sparse equations, which posed another algorithmic
difficulty.
To overcome these issues, we applied the recently

proposed elastic net algorithm [29] that is specifically
equipped to handle large, correlated and sparse pro-
blems. In addition, its regularization term was designed
to shrink a numbers of predictors to exactly zero. This
eliminates variables (miRNAs and TFs) without impor-
tance, and directly incorporates a feature selection pro-
cedure, which is otherwise computationally expensive.
In RA this strategy identified 349 variables, out of 415,

with coefficients different from zero. Similarly, for
RAEB2 it selected 197 out of the 290 possible variables.
In order to rule out the possibility that these results are
purely dependent on the expression levels of the regula-
tors, or the number of regulated genes, we calculated a
series of correlation coefficients. With Pearson Correla-
tion Coefficients of 0.003 and 0.067 for the expression
and 0.062 and 0.007 for the number of regulated genes,
there were no correlations found for the low- and high-
grade MDS, respectively.
The selected variables for RA included 119 miRNA*, 90

miRNA and 140 TF. In addition to the increased expres-
sion of miRNA* in RA and their potential to regulate low-
grade MDS associated biological functions and pathways,
the large selection of miRNA* provides further mathemati-
cal evidence for their regulatory importance.
To identify important miRNA/miRNA* and TFs, all

regulators were ranked based on the aberration of their
regression coefficients from zero (Figure 6). A large
deviation, in positive or negative direction, is synon-
ymous with a large influence on gene expression.
In RA, two subtype-specific expressed miRNAs were

selected as most dominant regulators. Whereas the dif-
ferentially expressed target genes of hsa-mir-1977** reg-
ulate hematopoiesis and apoptosis, hsa-miR-130a has
previously been associated with the regulation of angio-
genesis and platelet physiology [52,53]. The transcrip-
tion factor E2F1 ranked three and is known to regulate
S-phase dependent apoptosis in MDS [54,55]. Similar,

Figure 5 Transcriptome analysis pipeline. Pipeline for the integrative analysis of the MDS transcriptome, further described in the text and
Additional file 5 Figure S4.
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eight out of 13 TF within the top 20 have previously
been associated with “Hematological Disease” or
“Hematopoiesis”.
For RAEB2, the proposed pipeline selected 46

miRNA*, 76 miRNA and 84 TFs as influential. The 20
highest ranked regulators included 16 TFs, of which 12
have previously been associated with either “Hematolo-
gical Disease” or “Hematopoeisis”. The top ranked TF,
AP-2b, has a known role in the development of meta-
static phenotypes as well as apoptosis [56]. The highest
ranked miRNAs were hsa-miR-122 and hsa-miR-20b,
both expressed moderately and not linked to the RAEB2
phenotype.
In conclusion, the ranking of miRNAs and TFs with

known and important relation to MDS shows the power

of our approach. While a few TF have already been
extensively investigated in MDS, an in-depth understand-
ing of miRNA regulation remains elusive. We are plan-
ning to further study the functions of the novel miRNAs
hsa-mir-1977** and hsa-miR-130a in primary cells to
confirm our findings and illustrate their roles in MDS.

Key functions regulated by miRNAs and TFs in
Myelodysplastic Syndromes
In order to identify molecular processes influenced by
the above regulators, we first annotated the target genes
of highly ranked miRNAs/miRNA* and TFs (e.g. abso-
lute regression coefficients greater than one) with pre-
filtered (e.g. having less than 500 genes) gene ontologies
[57]. Then each biological process was ranked according

Figure 6 MDS transcriptome regulators. Top 20 regulators determined by the proposed modeling approach. The y-axis shows the regression
coefficients and the x-axis lists the regulator names. We named TF with their transfac accession and the corresponding protein name. The
miRNAs are named with their miRBase accession and we marked previously known miRNA* with a single and novel miRNA* with two stars. In
addition, we indicate the rounded regression coefficients on the respective regulator bars.
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to the number of involved target genes. Further, genes
differentially expressed in each process term were iden-
tified and overlaid with the above ranking onto Figure 7.
Some highly regulated processes, such as angiogenesis,

were shared between low- and high-grade MDS. More-
over, our model indicated a few biological processes that
are highly regulated in both disease subtypes, but differ-
ent in the levels of their expression. For example
“nuclear mRNA splicing, via spliceosome”, “G1/S

transition of mitotic cell cycle” or “protein import into
the nucleus, docking “. Rationally, such processes are
potential keys that can define functional differences in
MDS subtypes.
Of particular interest was the process “negative regula-

tion of transcription from RNA polymerase II promoters”
(GO:0000122), which was the most regulated process in
both MDS grades. This pathway prevents or reduces
transcription of different RNAs, including miRNAs.

Figure 7 MDS regulated biological processes. Illustration of biological processes that are highly regulated by influential miRNAs and TFs, as
selected by our in-silico model. The left figure shows results for the low risk and the right figure for the high risk grade. In both graphs the x-
axis describes the regulated process. The y-axis shows, in the black bar, the number of selected miRNA and TF that regulate a certain processes.
In the red bar the number of down- and in green bar the number of up regulated genes are shown.
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In RA, the majority of the differentially expressed
genes in this term were down regulated (Figure 7),
hence promoting transcription. By contrast in RAEB2,
the majority of differentially expressed genes were up
regulated, leading to a reduced RNA production.
Therefore, these results are in agreement with our ear-

lier findings that some miRNAs were only detected, or
had higher copy numbers, in RA compared to RAEB2.
Altogether, these results suggested that the differences

in miRNA expression between RA and RAEB2, and
potentially their downstream targets, might be the result
of RNA polymerase II promoter regulation. In RA, this
would indicate a potential feedback system in which
expressed miRNA and TF down regulate “GO:0000122”.
In turn, this could increase expression of RNA and
hence accumulate miRNAs. By contrast in RAEB2, the
selected miRNA and TF up regulate “GO:0000122”.
This drives the cell to reduce RNAs synthesis and con-
sequently decreases their overall amount.
Thus, the discussed feedback loops are a potential

explanation for the high amounts of miRNA seen in RA
and the much lower amount in RAEB2, two obvious dis-
coveries from the RNA-seq analysis described above.
Further studies to investigate the role of this pathway in
MDS are warranted.

Conclusions
In this paper we presented the first systematic profiling for
small RNAs in Myelodysplastic Syndromes using next gen-
eration sequencing on the current Illumina Genome Ana-
lyzer IIx platform. A custom data analysis pipeline that
handled raw reads, sequence alignment, data storage as
well as integrative read annotation was implemented. The
analysis showed that the small RNAome in low-grade
MDS (RA) was enriched for piRNAs, potentially protecting
DNA from the accumulation of mutations, a mechanism
not observed in high-grade MDS (RAEB2). By contrast,
tRNAs were enriched in RAEB2, which might contribute
to the characteristic reduction in apoptotic cell death at
this disease stage. In both grades a number of differentially
expressed miRNAs and miRNA* were detected and 48 pre-
viously unreported miRNA* exposed. In all analyzed cells,
miRNA reads were often found for either the mature or
the star sequence, indicating selective expression of
miRNA and miRNA*. Subsequent functional analysis of
target genes showed that both miRNA species (i.e. miRNA
and miRNA*), regulate similar MDS stage specific molecu-
lar functions and pathways indicating that miRNA* also
play important regulatory roles on the MDS transcriptome.
Using integrative bioinformatics modeling, we identified
miRNA species and TFs that act as important regulators
for a MDS transcriptome that is consistently deregulated
over a large MDS patient pool. Further ontology analysis

identified the geneontology process of “negative regulation
of transcription from RNA polymerase II promoters” as
highly controlled in both MDS grades. Additionally, our
findings suggested a potential feedback loop, where specific
miRNAs and TFs regulate their own expression by either
enhancing polymerase II promoter function, as seen in RA,
or repressing its function, as found in RAEB2. Further stu-
dies are warranted to experimentally substantiate our
observation and to develop novel biomarkers for the diag-
nosis and treatment of MDS.
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Additional file 1: This file contains all unique sequence reads in
fasta format for the control population. The identifiers contain the
number of times a read was sequenced, e.g. the x251 for the identifier
run_2_s_5_25_1_x251 means the read was sequenced 251 times.

Additional file 2: This file contains all unique sequence reads in
fasta format for the RA population. The identifiers contain the number
of times a read was sequenced, e.g. the x251 for the identifier
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