267 research outputs found

    Prospective phase II single-center study of the safety of a single very high dose of liposomal amphotericin B for antifungal prophylaxis in patients with acute myeloid leukemia.

    Get PDF
    Some preclinical and pharmacokinetic studies suggested the variable safety and the potential efficacy of an antifungal prophylaxis with a single high dose of liposomal amphotericin B (L-AmB) in high-risk patients. An open-label, prospective study was conducted with 48 adults receiving induction chemotherapy for acute myeloid leukemia (AML). Patients received a single infusion of 15 mg/kg of body weight L-AmB and, eventually, a second dose after 15 days of persistent neutropenia. The primary objective was tolerability and safety. Efficacy was also evaluated as a secondary endpoint. A pharmacokinetic study was performed with 34 patients in order to evaluate any association of plasma L-AmB levels with toxicity and efficacy. Overall, only 6 patients (12.5%) reported Common Toxicity Criteria (CTC) grade 3 hypokalemia, which was corrected with potassium supplementation in all cases, and no patient developed clinically relevant nephrotoxicity. Mild infusion-related adverse events occurred after 6 of 53 (11.3%) total infusions, with permanent drug discontinuation in only one case. Proven invasive fungal disease (IFD) was diagnosed in 4 (8.3%) patients. The mean AmB plasma levels at 6 h, 24 h, and 7 days after L-AmB administration were 160, 49.5, and 1 mg/liter, respectively. The plasma AmB levels were higher than the mean values of the overall population in 3 patients who developed CTC grade 3 hypokalemia and did not significantly differ from the mean values of the overall population in 3 patients who developed IFD. Our experience demonstrates the feasibility and safety of a single 15-mg/kg L-AmB dose as antifungal prophylaxis in AML patients undergoing induction chemotherapy

    Deciphering myeloid-derived suppressor cells: isolation and markers in humans, mice and non-human primates

    Get PDF
    International audienceIn cancer, infection and inflammation, the immune system's function can be dysregulated. Instead of fighting disease, immune cells may increase pathology and suppress host-protective immune responses. Myeloid cells show high plasticity and adapt to changing conditions and pathological challenges. Despite their relevance in disease pathophysiology, the identity, heterogeneity and biology of myeloid cells is still poorly understood. We will focus on phenotypical and functional markers of one of the key myeloid regulatory subtypes, the myeloid derived suppressor cells (MDSC), in humans, mice and non-human primates. Technical issues regarding the isolation of the cells from tissues and blood, timing and sample handling of MDSC will be detailed. Localization of MDSC in a tissue context is of crucial importance and immunohistochemistry approaches for this purpose are discussed. A minimal antibody panel for MDSC research is provided as part of the Mye-EUNITER COST action. Strategies for the identification of additional markers applying state of the art technologies such as mass cytometry will be highlighted. Such marker sets can be used to study MDSC phenotypes across tissues, diseases as well as species and will be crucial to accelerate MDSC research in health and disease

    Trends and Challenges in Experimental Macromolecular Crystallography

    Get PDF
    Macromolecular X-ray crystallography underpins the vigorous field of structural molecular biology having yielded many protein, nucleic acid and virus structures in fine detail. The understanding of the recognition by these macromolecules, as receptors, of their cognate ligands involves the detailed study of the structural chemistry of their molecular interactions. Also these structural details underpin the rational design of novel inhibitors in modern drug discovery in the pharmaceutical industry. Moreover, from such structures the functional details can be inferred, such as the biological chemistry of enzyme reactivity. There is then a vast number and range of types of biological macromolecules that potentially could be studied. The completion of the protein primary sequencing of the yeast genome, and the human genome sequencing project comprising some 105 proteins that is underway, raises expectations for equivalent three dimensional structural database

    Diagnosis and treatment of a rare case of adenomatoid odontogenic tumor in a young patient affected by attenuated familial adenomatosis polyposis (aFAP): case report and 5 year follow-up

    Get PDF
    Abstract. -BACKGROUND: The adenomatoid odontogenic tumor (AOT) is a quite rare odontogenic tumor, with an incidence rate of approximately 12 cases/year worldwide. Attenuated familial adenomatous polyposis (aFAP) is a syndrome characterized by a significant risk to develop colon cancer. The aim of the paper is to describe a case never reported before in the literature: an AOT developed in a patient with aFAP; moreover, we want to show how it appears 5 years after surgery and after the regeneration of the eroded bone tissue, using the PlateletRich Fibrin (PRF) as filling material. CASE PRESENTATION: We report the case of a female 18 years old patient, affected by aFAP; she comes to us with a swelling on the right hemi-face. We performed several radiological exams, and they showed a neoformation approximately 2 cm in diameter: this neoformation packed the upper right canine, therefore, we hypothesized a dentigerous cyst. We decided to proceed to open biopsy and enucleation of the lesion. An intra-operative endodontic treatment on the adjacent partially resorbed teeth was also performed. Finally, we performed a reconstruction of eroded bone tissue, by use of Platelet-Rich Fibrin as filling material. The samples fixed and embedded in paraffin have led to the diagnosis of AOT. After 5 years from the surgery, we did not find any clear sign of relapse, in addition, the use of PRF has favored an optimal osteogenesis at the surgical site. The onset of an AOT is quite rare in the general population, and this rarity could represent a critical point for its diagnosis; AOT onset in a patient with aFAP is a finding that could represent a new element of diagnosis and, therefore, the starting point to perform a more effective therapy

    Escape of HIV-1-Infected Dendritic Cells from TRAIL-Mediated NK Cell Cytotoxicity during NK-DC Cross-Talk—A Pivotal Role of HMGB1

    Get PDF
    Early stages of Human Immunodeficiency Virus-1 (HIV-1) infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK) cells and dendritic cells (DCs). Immature DCs (iDCs) capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them (“editing process”) at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL)-Death Receptor 4 (DR4) pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DCHIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DCHIV. The escape of DCHIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP) and the cellular inhibitor of apoptosis 2 (c-IAP2), induced by NK-DCHIV cognate interaction. High-mobility group box 1 (HMGB1), an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DCHIV. Finally, we demonstrate that restoration of DCHIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific siRNA, or by inhibiting HMGB1 with blocking antibodies or glycyrrhizin, arguing for a key role of HMGB1 in TRAIL resistance and DCHIV survival. These findings provide evidence for a new strategy developed by HIV to escape immune attack, they challenge the question of the involvement of HMGB1 in the establishment of viral reservoirs in DCs, and they identify potential therapeutic targets to eliminate infected DCs

    Early onset torsion dystonia (Oppenheim's dystonia)

    Get PDF
    Early onset torsion dystonia (EOTD) is a rare movement disorder characterized by involuntary, repetitive, sustained muscle contractions or postures involving one or more sites of the body. A US study estimated the prevalence at approximately 1 in 30,000. The estimated prevalence in the general population of Europe seems to be lower, ranging from 1 in 330,000 to 1 in 200,000, although precise numbers are currently not available. The estimated prevalence in the Ashkenazi Jewish population is approximately five to ten times higher, due to a founder mutation. Symptoms of EOTD typically develop first in an arm or leg in middle to late childhood and progress in approximately 30% of patients to other body regions (generalized dystonia) within about five years. Distribution and severity of symptoms vary widely between affected individuals. The majority of cases from various ethnic groups are caused by an autosomal dominantly inherited deletion of 3 bp (GAG) in the DYT1 gene on chromosome 9q34. This gene encodes a protein named torsinA, which is presumed to act as a chaperone protein associated with the endoplasmic reticulum and the nuclear envelope. It may interact with the dopamine transporter and participate in intracellular trafficking, although its precise function within the cell remains to be determined. Molecular genetic diagnostic and genetic counseling is recommended for individuals with age of onset below 26 years, and may also be considered in those with onset after 26 years having a relative with typical early onset dystonia. Treatment options include botulinum toxin injections for focal symptoms, pharmacological therapy such as anticholinergics (most commonly trihexiphenydil) for generalized dystonia and surgical approaches such as deep brain stimulation of the internal globus pallidus or intrathecal baclofen application in severe cases. All patients have normal cognitive function, and despite a high rate of generalization of dystonia, 75% of those patients are able to maintain ambulation and independence, and therefore a comparatively good quality of life, with modern treatment modalities
    corecore