124 research outputs found

    A computational methodology to account for the liquid film thickness evolution in Direct Numerical Simulation of prefilming airblast atomization

    Full text link
    Prefilming airblast atomization is widely used in aero engines. Fundamental studies on the annular configuration of airblast atomizers are difficult to realize. For this reason, researchers focused on planar configurations. In this regard, the Karlsruhe Institute of Technology (KIT) developed a test rig to conduct experimental activities, conforming a large database with results for different conditions. Such data allow validation of two-phase flow calculations concerning primary atomization on these devices. The present investigation proposes a Direct Numerical Simulation (DNS) on the KIT planar configuration through the Volume of Fluid (VOF) method within the PARIS code. The novelty compared to DNS reported in the literature resides in the use of a boundary condition that accounts not only for the gas inflow turbulence but also for the spatio-temporal evolution of the liquid film thickness at the DNS inlet and its effect on turbulence. The proposed methodology requires computing precursor single-phase and two-phase flow Large-Eddy Simulations. Results are compared to DNS that only account for a constant (both timewise and spanwise) liquid film thickness at the domain inlet, validating the workflow. The proposed methodology improves the qualitative description of the breakup mechanism, as its different stages (liquid accumulation behind the prefilmer edge, bag formation, bag breakup, ligament formation and ligament breakup) coexist spanwise for a given temporal snapshot. This implies more continuous atomization than the one predicted by the constant film thickness case, which showed the same breakup stage to be present along the prefilmer span for a given instant and led to a more discretized set of atomization events. The proposed workflow allows quantifying the influence of the liquid film flow evolution above the prefilmer on primary breakup frequency and atomization features.Comment: Preprint submitted to International Journal of Multiphase Flo

    Modeling gaseous non-reactive flow in a lean direct injection gas turbine combustor through an advanced mesh control strategy

    Full text link
    [EN] Fuel efficiency improvement and harmful emissions reduction are the main motivations for the development of gas turbine combustors. Numerical computational fluid dynamics (CFD) simulations of these devices are usually computationally expensive since they imply a multi-scale problem. In this work, gaseous non-reactive unsteady Reynolds-Averaged Navier-Stokes and large eddy simulations of a gaseous-fueled radial-swirled lean direct injection combustor have been carried out through CONVERGE (TM) CFD code by solving the complete inlet flow path through the swirl vanes and the combustor. The geometry considered is the gaseous configuration of the CORIA lean direct injection combustor, for which detailed measurements are available. The emphasis of the work is placed on the demonstration of the CONVERGE (TM) applicability to the multi-scale gas turbine engines field and the determination of an optimal mesh strategy through several grid control tools (i.e., local refinement, adaptive mesh refinement) allowing the exploitation of its automatic mesh generation against traditional fixed mesh approaches. For this purpose, the normalized mean square error has been adopted to quantify the accuracy of turbulent numerical statistics regarding the agreement with the experimental database. Furthermore, the focus of the work is to study the behavior when coupling several large eddy simulation sub-grid scale models (i.e., Smagorinsky, Dynamic Smagorinsky, and Dynamic Structure) with the adaptive mesh refinement algorithm through the evaluation of its specific performances and predictive capabilities in resolving the spatial-temporal scales and the intrinsically unsteady flow structures generated within the combustor. This investigation on the main non-reacting swirling flow characteristics inside the combustor provides a suitable background for further studies on combustion instability mechanisms.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partly sponsored by the program "Ayuda a Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Spain.'' The support given to Mr. Mario Belmar by Universitat Politecnica de Valencia through the "FPI-Subprograma 2'' grant within the "Programa de Apoyo para la Investigacion y Desarrollo (PAID-01-18)'' is gratefully acknowledged.Payri, R.; Novella Rosa, R.; Carreres, M.; Belmar-Gil, M. (2020). Modeling gaseous non-reactive flow in a lean direct injection gas turbine combustor through an advanced mesh control strategy. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering. 234(11):1788-1810. https://doi.org/10.1177/0954410020919619S1788181023411Patel, N., Kırtaş, M., Sankaran, V., & Menon, S. (2007). Simulation of spray combustion in a lean-direct injection combustor. Proceedings of the Combustion Institute, 31(2), 2327-2334. doi:10.1016/j.proci.2006.07.232Luo, K., Pitsch, H., Pai, M. G., & Desjardins, O. (2011). Direct numerical simulations and analysis of three-dimensional n-heptane spray flames in a model swirl combustor. Proceedings of the Combustion Institute, 33(2), 2143-2152. doi:10.1016/j.proci.2010.06.077Masri, A. R., Pope, S. B., & Dally, B. B. (2000). Probability density function computations of a strongly swirling nonpremixed flame stabilized on a new burner. Proceedings of the Combustion Institute, 28(1), 123-131. doi:10.1016/s0082-0784(00)80203-9Johnson, M. R., Littlejohn, D., Nazeer, W. A., Smith, K. O., & Cheng, R. K. (2005). A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proceedings of the Combustion Institute, 30(2), 2867-2874. doi:10.1016/j.proci.2004.07.040Sankaran, V., & Menon †, S. (2002). LES of spray combustion in swirling flows. Journal of Turbulence, 3, N11. doi:10.1088/1468-5248/3/1/011Jones, W. P., Marquis, A. J., & Vogiatzaki, K. (2014). Large-eddy simulation of spray combustion in a gas turbine combustor. Combustion and Flame, 161(1), 222-239. doi:10.1016/j.combustflame.2013.07.016Ding, G., He, X., Xue, C., Zhao, Z., & Jin, Y. (2015). Preliminary design and experimental verification of a triple swirler combustor. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(12), 2258-2271. doi:10.1177/0954410015573555Menon, S., & Patel, N. (2006). Subgrid Modeling for Simulation of Spray Combustion in Large-Scale Combustors. AIAA Journal, 44(4), 709-723. doi:10.2514/1.14875Wang, P., Platova, N. A., Fröhlich, J., & Maas, U. (2014). Large Eddy Simulation of the PRECCINSTA burner. International Journal of Heat and Mass Transfer, 70, 486-495. doi:10.1016/j.ijheatmasstransfer.2013.11.025Cordier, M., Vandel, A., Cabot, G., Renou, B., & Boukhalfa, A. M. (2013). Laser-Induced Spark Ignition of Premixed Confined Swirled Flames. Combustion Science and Technology, 185(3), 379-407. doi:10.1080/00102202.2012.725791Patel, N., & Menon, S. (2008). Simulation of spray–turbulence–flame interactions in a lean direct injection combustor. Combustion and Flame, 153(1-2), 228-257. doi:10.1016/j.combustflame.2007.09.011Bang, B.-H., Kim, Y.-I., Jeong, S., Yoon, Y., Yarin, A. L., & Yoon, S. S. (2019). Theoretical model for swirling thin film flows inside nozzles with converging-diverging shapes. Applied Mathematical Modelling, 76, 607-616. doi:10.1016/j.apm.2019.06.025Linne, M., Paciaroni, M., Hall, T., & Parker, T. (2006). Ballistic imaging of the near field in a diesel spray. Experiments in Fluids, 40(6), 836-846. doi:10.1007/s00348-006-0122-0Desantes, J. M., Salvador, F. J., López, J. J., & De la Morena, J. (2010). Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation. Experiments in Fluids, 50(2), 233-246. doi:10.1007/s00348-010-0919-8Reddemann, M. A., Mathieu, F., & Kneer, R. (2013). Transmitted light microscopy for visualizing the turbulent primary breakup of a microscale liquid jet. Experiments in Fluids, 54(11). doi:10.1007/s00348-013-1607-2Chen, R.-H., & Driscoll, J. F. (1989). The role of the recirculation vortex in improving fuel-air mixing within swirling flames. Symposium (International) on Combustion, 22(1), 531-540. doi:10.1016/s0082-0784(89)80060-8Presser, C., Gupta, A. K., & Semerjian, H. G. (1993). Aerodynamic characteristics of swirling spray flames: Pressure-jet atomizer. Combustion and Flame, 92(1-2), 25-44. doi:10.1016/0010-2180(93)90196-aBulzan, D. L. (1995). Structure of a swirl-stabilized combusting spray. Journal of Propulsion and Power, 11(6), 1093-1102. doi:10.2514/3.23946Sommerfeld, M., & Qiu, H.-H. (1998). Experimental studies of spray evaporation in turbulent flow. International Journal of Heat and Fluid Flow, 19(1), 10-22. doi:10.1016/s0142-727x(97)10002-9Hadef, R., & Lenze, B. (2005). Measurements of droplets characteristics in a swirl-stabilized spray flame. Experimental Thermal and Fluid Science, 30(2), 117-130. doi:10.1016/j.expthermflusci.2005.05.002Soltani, M. R., Ghorbanian, K., Ashjaee, M., & Morad, M. R. (2005). Spray characteristics of a liquid–liquid coaxial swirl atomizer at different mass flow rates. Aerospace Science and Technology, 9(7), 592-604. doi:10.1016/j.ast.2005.04.004Tratnig, A., & Brenn, G. (2010). Drop size spectra in sprays from pressure-swirl atomizers. International Journal of Multiphase Flow, 36(5), 349-363. doi:10.1016/j.ijmultiphaseflow.2010.01.008Asgari, B., & Amani, E. (2017). A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors. Applied Energy, 203, 696-710. doi:10.1016/j.apenergy.2017.06.080Moureau, V., Domingo, P., & Vervisch, L. (2011). From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling. Combustion and Flame, 158(7), 1340-1357. doi:10.1016/j.combustflame.2010.12.004Caraeni, D., Bergström, C., & Fuchs, L. (2000). Flow, Turbulence and Combustion, 65(2), 223-244. doi:10.1023/a:1011428926494Icardi, M., Gavi, E., Marchisio, D. L., Olsen, M. G., Fox, R. O., & Lakehal, D. (2011). Validation of LES predictions for turbulent flow in a Confined Impinging Jets Reactor. Applied Mathematical Modelling, 35(4), 1591-1602. doi:10.1016/j.apm.2010.09.035Sankaran, V., & Menon, S. (2002). Vorticity-scalar alignments and small-scale structures in swirling spray combustion. Proceedings of the Combustion Institute, 29(1), 577-584. doi:10.1016/s1540-7489(02)80074-8Lebas, R., Menard, T., Beau, P. A., Berlemont, A., & Demoulin, F. X. (2009). Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35(3), 247-260. doi:10.1016/j.ijmultiphaseflow.2008.11.005Zhou, Y., Huang, Y., & Mu, Z. (2017). Large eddy simulation of the influence of synthetic inlet turbulence on a practical aeroengine combustor with counter-rotating swirler. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(3), 978-990. doi:10.1177/0954410017745900Torregrosa, A. J., Broatch, A., García-Tíscar, J., & Gomez-Soriano, J. (2018). Modal decomposition of the unsteady flow field in compression-ignited combustion chambers. Combustion and Flame, 188, 469-482. doi:10.1016/j.combustflame.2017.10.007Xu, L., Bai, X.-S., Jia, M., Qian, Y., Qiao, X., & Lu, X. (2018). Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system. Applied Energy, 230, 287-304. doi:10.1016/j.apenergy.2018.08.104Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106Esclapez, L., Riber, E., & Cuenot, B. (2015). Ignition probability of a partially premixed burner using LES. Proceedings of the Combustion Institute, 35(3), 3133-3141. doi:10.1016/j.proci.2014.07.040Rhie, C. M., & Chow, W. L. (1983). Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal, 21(11), 1525-1532. doi:10.2514/3.8284Gousseau, P., Blocken, B., & van Heijst, G. J. F. (2013). Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: Validation and solution verification. Computers & Fluids, 79, 120-133. doi:10.1016/j.compfluid.2013.03.006Hanna, S. ., Tehranian, S., Carissimo, B., Macdonald, R. ., & Lohner, R. (2002). Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmospheric Environment, 36(32), 5067-5079. doi:10.1016/s1352-2310(02)00566-6Hanna, S. R., Hansen, O. R., & Dharmavaram, S. (2004). FLACS CFD air quality model performance evaluation with Kit Fox, MUST, Prairie Grass, and EMU observations. Atmospheric Environment, 38(28), 4675-4687. doi:10.1016/j.atmosenv.2004.05.041Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424Blazek, J. (2015). Turbulence Modeling. Computational Fluid Dynamics: Principles and Applications, 213-252. doi:10.1016/b978-0-08-099995-1.00007-5Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035Celik, I. B., Cehreli, Z. N., & Yavuz, I. (2005). Index of Resolution Quality for Large Eddy Simulations. Journal of Fluids Engineering, 127(5), 949-958. doi:10.1115/1.1990201Celik, I., Klein, M., & Janicka, J. (2009). Assessment Measures for Engineering LES Applications. Journal of Fluids Engineering, 131(3). doi:10.1115/1.3059703Ivanic, T., Foucault, E., & Pecheux, J. (2003). Dynamics of swirling jet flows. Experiments in Fluids, 35(4), 317-324. doi:10.1007/s00348-003-0646-5Huang, Y., & Yang, V. (2009). Dynamics and stability of lean-premixed swirl-stabilized combustion. Progress in Energy and Combustion Science, 35(4), 293-364. doi:10.1016/j.pecs.2009.01.002Syred, N., & Beér, J. M. (1974). Combustion in swirling flows: A review. Combustion and Flame, 23(2), 143-201. doi:10.1016/0010-2180(74)90057-

    Mastectomía preservadora de piel con colgajo dermograso desepitelizado (técnica de Spira modificada) y reconstrucción mediante implante directo

    Get PDF
    Introducción La técnica de Spira es un tipo de mastectomía preservadora de piel que permite la reconstrucción inmediata (RMI), ideal en mamas ptósicas. Si bien, persiste controversia sobre resultados oncológicos en el cáncer de mama. El objetivo es analizar complicaciones, secuelas cosméticas, causas de reintervención y resultados oncológicos. Métodos Estudio observacional retrospectivo de pacientes intervenidas durante 2003-2018 en nuestro centro. La población de estudio la constituyen pacientes con carcinoma de mama o sometidas a mastectomía profiláctica por alto riesgo, en las que se realizó una mastectomía preservadora de piel con colgajo dermograso desepitelizado (técnica de Spira modificada) y reconstrucción mediante implante directo. Se analiza la presencia de complicaciones precoces y tardías, secuelas, recidiva tumoral y supervivencia. Resultados Se realizaron 247 mastectomías con reconstrucción en 139 pacientes, 216 bilaterales (87, 4%) y 31 unilaterales (12, 5%); 121 terapéuticas (49%) y 126 profilácticas (51%). La mediana de seguimiento fue de 81 meses. Se observaron complicaciones en un 16, 2%; necrosis cutánea en 5, 3% y cinco casos de necrosis del CAP (2%). La tasa de reintervención por secuelas cosméticas fue del 17, 4% (la más frecuente fue contractura capsular 11, 3%) y, de ellas, el 39, 3% recibieron RT. La tasa de recidiva fue del 14% (0, 8% cutánea, 3, 3% locorregional y 9, 9% a distancia). Ocho pacientes fallecieron (6, 6%). La SLE y SG fue del 92, 6% y 93, 3% a cinco años. Conclusión La técnica de Spira constituye una opción segura y ofrece buenos resultados cosméticos y oncológicos como tratamiento y profilaxis de cáncer de mama en mamas ptósicas de moderado a gran tamaño. Introduction: Spira technique is a type of nipple-sparing mastectomy that allows immediate reconstruction (IBR), ideal for ptosic breasts. Although, controversy persists regarding oncological results in breast cancer. The aim is to analyze complications, cosmetic outcomes, causes of reoperation and oncological results. Methods: Retrospective observational analysis of patients undergone surgery during 2003-2018 in our center. Study population is based on patients with breast carcinoma or undergoing prophylactic mastectomy due to high-risk, in which a skin-sparing mastectomy with a de-epithelialized derma-fat flap (modified Spira technique) and direct to implant reconstruction was performed. Short and long-term complications, sequelae, tumor recurrence and survival rates are analyzed. results: A total of 247 mastectomies with immediate reconstruction in 139 patients, 216 bilateral (87.4%) and 31 unilateral (12.5%) were performed. 121 therapeutic (49%) and 126 prophylactic (51%). Median follow-up 81 months. Complications were observed in 16.2%; skin necrosis 5.3% and 5 cases of NAC necrosis (2%). Reoperation rate due to cosmetic sequelae was 17.4% (capsular contracture was the most frequent, 11.3%) and a 39.3% of these patients have received RT. Recurrence of 14% (0.8% skin, 3.3% locoregional and 9.9% metastatic), 8 patients died (6.6%). Rates of FSD and OS were 92.6% and 93.3% respectively. Conclusion: Spira mastectomy is a safe option and provides good cosmetic and oncologic results as breast cancer treatment and prophylaxis in moderate-large ptosic breasts

    Comparison of different techniques for characterizing the diesel injector internal dimensions

    Full text link
    [EN] The geometry of certain parts of diesel injectors is key to the injection, atomization and fuel-air mixing phenomena. Small variations on the geometrical parameters may have a strong influence on the aforementioned processes. Thus, OEMs need to assess their manufacturing tolerances, whereas researchers in the field (both experimentalists and modelers) rely on the accuracy of a certain metrology technique for their studies. In the current paper, an investigation of the capability of different experimental techniques to determine the geometry of a modern diesel fuel injector has been performed. For this purpose, three main elements of the injector have been evaluated: the control volume inlet and outlet orifices, together with the nozzle orifices. While the direct observation of the samples through an optical microscope is only possible for the simplest pieces, both Computed Tomography Scanning and the visualization of silicone molds technique have proven their ability to characterize the most complex internal shapes corresponding to the internal injector elements. Indeed, results indicate that the differences observed among these methodologies for the determination of the control volume inlet orifice diameter and the nozzle orifice dimensions are smaller than the uncertainties related to the experimental techniques, showing that they are both equally accurate. This implies that the choice of a given technique for the particular application of determining the geometry of diesel injectors can be done on the basis of availability, intrusion and costs, rather than on its accuracy.This work was partly sponsored by "Ministerio de Economia y Competitividad", of the Spanish Government, in the frame of the Project "Estudio de la interaccion chorro-pared en condiciones realistas de motor", Reference TRA2015-67679-c2-1-R.Salvador, FJ.; Gimeno, J.; De La Morena, J.; Carreres, M. (2018). Comparison of different techniques for characterizing the diesel injector internal dimensions. Experimental Techniques. 42(5):467-472. https://doi.org/10.1007/s40799-018-0246-1S467472425Mobasheri R, Peng Z, Mostafa S (2012) Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling. Int J Heat Fluid Flow 33(1):59–69Dhar A, Agarwal AK (2015) Experimental investigations of the effect of pilot injection on performance, emissions and combustion characteristics of Karanja biodiesel fuelled CRDI engine. Energy Convers Manag 93:357–366Mohan B, Yang W, Chou SK (2013) Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—a review. Renew Sust Energ Rev 28(x):664–676Petrovic V, Bracanovic Z, Grozdanic B, Petrovic S, Sazhin S, Knezevic D (2015) The design of a full flow dilution tunnel with a critical flow venturi for the measurement of diesel engine particulate emission. FME Trans 43(2):99–106Ilić Z, Rasuo B, Jovanović M, Janković D (2013) Impact of changing quality of air/fuel mixture during flight of a piston engine aircraft with respect to vibration low frequency spectrum. FME Trans 41(1):25–32Luján JM, Tormos B, Salvador FJ, Galgar K (2009) Comparative analysis of a DI diesel engine fuelled with biodiesel blends during the European MVEG-A cycle: Preliminaru study I. Biomass & Bioenergy 33(6–7):941–947Postrioti L, Mariani F, Battistoni M (2012) Experimental and numerical momentum flux evaluation of high pressure diesel spray. Fuel 98:149–163Payri R, Salvador FJ, Gimeno J, Venegas O (2016) A technique to match the refractive index of different diesel fuels with the refractive index of transparent materials to improve the experimental visualization. Exp Tech 40(1):261–269Duran SP, Porter JM, Parker TE (2015) Ballistic imaging of diesel sprays using a picosecond laser: characterization and demonstration. Appl Opt 54(7):1743Payri R, Salvador FJ, Gimeno J et al (2011) Flow regime effects on non-cavitating injection nozzles over spray behavior. Int J Heat Fluid Flow 32(1):273–284Koukouvinis P, Gavaises M, Li J, Wang L (2016) Large Eddy simulation of diesel injector including cavitation effects and correlation to erosion damage. Fuel 175:26–39Som S, Aggarwal SK (2010) Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines. Combust Flame 157(6):1179–1193Salvador FJ, De la Morena J, Martínez-López J, Jaramillo D (2017) Assessment of compressibility effects on internal nozzle flow in diesel injectors at very high injection pressures. Energy Convers Manag 132:221–230Salvador FJ, Gimeno J, de la Morena J, Martí-Aldaraví P (2012) Using one-dimensional modelling to analyze the influence of the use of biodiesels on the dynamic behaviour of solenoid-operated injectors in common rail systems: Results of the simulation and discussion. Energy Convers Manag 54(1):122–132Taghavifar H, Khalilarya S, Jafarmadar S, Baghery F (2016) 3-D numerical consideration of nozzle structure on combustion and emission characteristics of DI diesel injector. Appl Math Model 40(19–20):8630–8646Edelbauer W (2017) Numerical simulation of cavitating injector flow and liquid spray break-up by combination of Eulerian–Eulerian and volume-of-fluid methods. Comput Fluids 144:19–33Salvador FJ, Carreres M, Jaramillo D, Martínez-López J (2015) Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics. Energy Convers Manag 103:284–299Salvador FJ, Martínez-López J, Romero JV, Roselló MD (2013) Study of the influence of the needle eccentricity on the internal flow in diesel injector nozzles by computational fluid dynamics calculations. Int J Comput Math 91, no. June:24–31Payri R, Salvador FJ, Carreres M, De la Morena J (Apr. 2016) Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Convers Manag 114:376–391Salvador FJ, Hoyas S, Novella R, Martinez-López J (2011) Numerical simulation and extended validation of two-phase compressible flow in diesel injector nozzles. Proc Inst Mech Eng Part-D-J Automob Eng 225(D4):545–563Satkoski C, Shaver G (2011) Piezoelectric fuel injection: pulse-to-pulse coupling and flow rate estimation. IEEE/ASME Trans Mechatron 16(4):627–642Ferrari A, Mittica A (2016) Response of different injector typologies to dwell time variations and a hydraulic analysis of closely-coupled and continuous rate shaping injection schedules. Appl Energy 169:899–911Payri R, Salvador FJ, Gimeno J, De la Morena J (2011) Analysis of diesel spray atomization by means of a near-nozzle field visualization technique. At Sprays 21(9):753–774Li T, Moon S, Sato K, Yokohata H (Feb. 2017) A comprehensive study on the factors affecting near-nozzle spray dynamics of multi-hole GDI injectors. Fuel 190:292–302Yu W, Yang W, Zhao F (2017) Investigation of internal nozzle flow, spray and combustion characteristics fueled with diesel, gasoline and wide distillation fuel (WDF) based on a piezoelectric injector and a direct injection compression ignition engine. Appl Therm Eng 114:905–920Salvador FJ, Carreres M, Crialesi-Esposito M, Plazas AH (2017) Determination of critical operating and geometrical parameters in diesel injectors through one dimensional modelling, design of experiments and an analysis of variance. Proc Inst Mech Eng Part D J Automob EngMacian V, Bermúdez V, Payri R, Gimeno J (2003) New technique for determination of internal geometry of a diesel nozzle with the use of silicone methodology. Exp Tech 27, no April:39–43Piano A, Millo F, Postrioti L, Biscontini G, Cavicchi A, and Pesce FC, (2016) “Numerical and experimental assessment of a solenoid common-rail injector operation with advanced injection strategies,” SAE Int J Engines 9(1)Mitroglou N, Lorenzi M, Santini M, Gavaises M (2016) Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows. Exp Fluids 57(11):1–14Kastengren AL, Tilocco FZ, Powell CF, Manin J, Pickett LM, Payri R, Bazyn T (2012) Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior. At Sprays 22(12):1011–1052Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–6

    Mastectomía ahorradora de piel y pezón en carcinoma ductal in situ. Seguridad oncológica a 10 años

    Get PDF
    Objetivo El objetivo es evaluar la seguridad oncológica a 10 años de la mastectomía ahorradora de piel y pezón (MAP) en pacientes con carcinoma ductal in situ (CDIS). Método Análisis observacional retrospectivo. Se realizaron 35 MAP en pacientes con CDIS durante 2005-2018. Evaluamos resultados histológicos, oncológicos y de morbilidad. Resultados Las indicaciones más frecuentes fueron márgenes afectos tras tumorectomía (31, 5%), multifocalidad/multicéntricidad (22, 8%), tumor >3 cm (8, 6%) correlación desfavorable tamaño tumoral/mama (8, 6%) y decisión de la paciente (8, 6%). La técnica más usada fue incisión lateral externa en 11 pacientes, seguida de técnica de Spira en nueve casos. La presencia de CDIS se confirmó en 22 pacientes y en 11 no se encontró tumor en la pieza de mastectomía. La tasa de complicaciones fue 22, 8%. Tras una mediana de seguimiento de 104 meses (DE 69, 9) no se observó necrosis del pezón. Un 20% de pacientes precisó reintervención a largo plazo. Once pacientes (31, 4%) recibieron tratamiento adyuvante (QT y/o RT). Solamente una paciente presentó recurrencia local (2, 8%) 28 meses tras la intervención. Una paciente presentó metástasis tras 78 meses de SLE. Las tasas de SLE y SG fueron 94, 3% y 97, 22%. El análisis univariante mostró dos factores de riesgo de recurrencia: edad <40 [OR (IC95) 2, 529 (1, 230 - 5, 199)] y márgenes afectos [OR (IC95) 5, 242 (2, 041 - 13, 464)]. Conclusión La MAP es factible y segura en pacientes con CDIS no candidatas a cirugía conservadora. Objective: The aim of this study was to assess the oncological safety of nipple-sparing mastectomy (NSM) in patients with ductal in situ carcinoma (DCIS) over a 10-year period. Method: Retrospective observational analysis. A total of 35 NSM were performed in patients with DCIS from 2005 - 2018. We assessed the histological, oncological and morbidity results. Results: The most frequent indications were margin involvement after lumpectomy (31.5%), multifocality / multicentricity (22.8%), tumour size >3 cm (8.6%) unfavourable tumour / breast size correlation (8.6%) and patient choice (8.6%). The most commonly used technique was external lateral incision in 11 patients, followed by the Spira technique in 9 patients. DCIS was confirmed in 22 patients and no tumour was found in mastectomy specimen in 11 patients. The complication rate was 22.8%. After a median follow-up of 104 months (SD 69.9) there was no nipple necrosis. In all, 20% of the patients required long-term reintervention. Eleven patients (31.4%) underwent adjuvant treatment (chemotherapy and / or radiotherapy). Only one patient showed local recurrence (2.8%) 28 months after the intervention. One patient developed metastases after 78 months of disease-free survival (DFS). DFS and overall survival rates were 94.3% and 97.22%. Univariate analysis showed two risk factors for recurrence: age <40 years [OR (95% CI) 2.529 (1.230-5.199)] and margin involvement [OR (95% CI) 5.242 (2.041 - 13.464)]. Conclusion: NSM is safe and feasible in patients with DCIS who are not candidates for conservative surgery

    Characterization of protons accelerated from a 3 TW table-top laser system

    Full text link
    [EN] We report on benchmark tests of a 3 TW/50 fs, table-top laser system specifically developed for proton acceleration with an intrinsic pump rate up to 100 Hz. In two series of single-shot measurements differing in pulse energy and contrast the successful operation of the diode pumped laser is demonstrated. Protons have been accelerated up to 1.6 MeV in interactions of laser pulses focused on aluminium and mylar foils between 0.8 and 25 mu m thickness. Their spectral distributions and maximum energies are consistent with former experiments under similar conditions. These results show the suitability of our system and provide a reference for studies of laser targets at high repetition rate and possible applications.This project has been funded by Centro para el Desarrollo Tecnologico Industrial (CDTI, Spain) within the INNPRONTA program, grant no. IPT-20111027, by EUROSTARS project E9113, and by the Spanish Ministry for Economy and Competitiveness within the Retos-Colaboracion 2015 initiative, ref. RTC-2015-3278-1.Bellido-Millán, PJ.; Lera, R.; Seimetz, M.; Ruiz-De La Cruz, A.; Torres Peiró, S.; Galán, M.; Mur, P.... (2017). Characterization of protons accelerated from a 3 TW table-top laser system. Journal of Instrumentation. 12:1-12. https://doi.org/10.1088/1748-0221/12/05/T05001S11212Daido, H., Nishiuchi, M., & Pirozhkov, A. S. (2012). Review of laser-driven ion sources and their applications. Reports on Progress in Physics, 75(5), 056401. doi:10.1088/0034-4885/75/5/056401Macchi, A., Borghesi, M., & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Reviews of Modern Physics, 85(2), 751-793. doi:10.1103/revmodphys.85.751Ledingham, K., Bolton, P., Shikazono, N., & Ma, C.-M. (2014). Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress. Applied Sciences, 4(3), 402-443. doi:10.3390/app4030402Kraft, S. D., Richter, C., Zeil, K., Baumann, M., Beyreuther, E., Bock, S., … Pawelke, J. (2010). Dose-dependent biological damage of tumour cells by laser-accelerated proton beams. New Journal of Physics, 12(8), 085003. doi:10.1088/1367-2630/12/8/085003Yogo, A., Sato, K., Nishikino, M., Mori, M., Teshima, T., Numasaki, H., … Daido, H. (2009). Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Applied Physics Letters, 94(18), 181502. doi:10.1063/1.3126452Fritzler, S., Malka, V., Grillon, G., Rousseau, J. P., Burgy, F., Lefebvre, E., … Ledingham, K. W. D. (2003). Proton beams generated with high-intensity lasers: Applications to medical isotope production. Applied Physics Letters, 83(15), 3039-3041. doi:10.1063/1.1616661Kishimura, H., Morishita, H., Okano, Y. H., Okano, Y., Hironaka, Y., Kondo, K., … Nemoto, K. (2004). Enhanced generation of fast protons from a polymer-coated metal foil by a femtosecond intense laser field. Applied Physics Letters, 85(14), 2736-2738. doi:10.1063/1.1803915Nakamura, S., Iwashita, Y., Noda, A., Shirai, T., Tongu, H., Fukumi, A., … Wada, Y. (2006). Real-Time Optimization of Proton Production by Intense Short-Pulse Laser with Time-of-Flight Measurement. Japanese Journal of Applied Physics, 45(No. 34), L913-L916. doi:10.1143/jjap.45.l913Nishiuchi, M., Fukumi, A., Daido, H., Li, Z., Sagisaka, A., Ogura, K., … Nakamura, S. (2006). The laser proton acceleration in the strong charge separation regime. Physics Letters A, 357(4-5), 339-344. doi:10.1016/j.physleta.2006.04.053Yogo, A., Daido, H., Fukumi, A., Li, Z., Ogura, K., Sagisaka, A., … Itoh, A. (2007). Laser prepulse dependency of proton-energy distributions in ultraintense laser-foil interactions with an online time-of-flight technique. Physics of Plasmas, 14(4), 043104. doi:10.1063/1.2721066Robinson, A. P. L., Foster, P., Adams, D., Carroll, D. C., Dromey, B., Hawkes, S., … Neely, D. (2009). Spectral modification of laser-accelerated proton beams by self-generated magnetic fields. New Journal of Physics, 11(8), 083018. doi:10.1088/1367-2630/11/8/083018Nemoto, K., Maksimchuk, A., Banerjee, S., Flippo, K., Mourou, G., Umstadter, D., & Bychenkov, V. Y. (2001). Laser-triggered ion acceleration and table top isotope production. Applied Physics Letters, 78(5), 595-597. doi:10.1063/1.1343845Lee, K., Park, S. H., Cha, Y.-H., Lee, J. Y., Lee, Y. W., Yea, K.-H., & Jeong, Y. U. (2008). Generation of intense proton beams from plastic targets irradiated by an ultraintense laser pulse. Physical Review E, 78(5). doi:10.1103/physreve.78.056403Yogo, A., Daido, H., Bulanov, S. V., Nemoto, K., Oishi, Y., Nayuki, T., … Tajima, T. (2008). Laser ion acceleration via control of the near-critical density target. Physical Review E, 77(1). doi:10.1103/physreve.77.016401Lee, K., Lee, J. Y., Park, S. H., Cha, Y.-H., Lee, Y. W., Kim, K. N., & Jeong, Y. U. (2011). Dominant front-side acceleration of energetic proton beams from plastic targets irradiated by an ultraintense laser pulse. Physics of Plasmas, 18(1), 013101. doi:10.1063/1.3496058OKIHARA, S., SENTOKU, Y., SUEDA, K., SHIMIZU, S., SATO, F., MIYANAGA, N., … SAKABE, S. (2002). Energetic Proton Generation in a Thin Plastic Foil Irradiated by Intense Femtosecond Lasers. Journal of Nuclear Science and Technology, 39(1), 1-5. doi:10.1080/18811248.2002.9715150McKenna, P., Ledingham, K. W. D., Spencer, I., McCany, T., Singhal, R. P., Ziener, C., … Clark, E. L. (2002). Characterization of multiterawatt laser-solid interactions for proton acceleration. Review of Scientific Instruments, 73(12), 4176-4184. doi:10.1063/1.1516855Spencer, I., Ledingham, K. W. D., McKenna, P., McCanny, T., Singhal, R. P., Foster, P. S., … Davies, J. R. (2003). Experimental study of proton emission from 60-fs, 200-mJ high-repetition-rate tabletop-laser pulses interacting with solid targets. Physical Review E, 67(4). doi:10.1103/physreve.67.046402Kaluza, M., Schreiber, J., Santala, M. I. K., Tsakiris, G. D., Eidmann, K., Meyer-ter-Vehn, J., & Witte, K. J. (2004). Influence of the Laser Prepulse on Proton Acceleration in Thin-Foil Experiments. Physical Review Letters, 93(4). doi:10.1103/physrevlett.93.045003Ceccotti, T., Lévy, A., Popescu, H., Réau, F., D’Oliveira, P., Monot, P., … Martin, P. (2007). Proton Acceleration with High-Intensity Ultrahigh-Contrast Laser Pulses. Physical Review Letters, 99(18). doi:10.1103/physrevlett.99.185002Neely, D., Foster, P., Robinson, A., Lindau, F., Lundh, O., Persson, A., … McKenna, P. (2006). Enhanced proton beams from ultrathin targets driven by high contrast laser pulses. Applied Physics Letters, 89(2), 021502. doi:10.1063/1.2220011Steinke, S., Henig, A., Schnürer, M., Sokollik, T., Nickles, P. V., Jung, D., … Habs, D. (2010). Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets. Laser and Particle Beams, 28(1), 215-221. doi:10.1017/s0263034610000157Strickland, D., & Mourou, G. (1985). Compression of amplified chirped optical pulses. Optics Communications, 56(3), 219-221. doi:10.1016/0030-4018(85)90120-8Yogo, A., Kondo, K., Mori, M., Kiriyama, H., Ogura, K., Shimomura, T., … Bolton, P. R. (2014). Insertable pulse cleaning module with a saturable absorber pair and a compensating amplifier for high-intensity ultrashort-pulse lasers. Optics Express, 22(2), 2060. doi:10.1364/oe.22.002060Trisorio, A., Grabielle, S., Divall, M., Forget, N., & Hauri, C. P. (2012). Self-referenced spectral interferometry for ultrashort infrared pulse characterization. Optics Letters, 37(14), 2892. doi:10.1364/ol.37.002892Seimetz, M., Bellido, P., Soriano, A., Garcia Lopez, J., Jimenez-Ramos, M. C., Fernandez, B., … Benlloch, J. M. (2015). Calibration and Performance Tests of Detectors for Laser-Accelerated Protons. IEEE Transactions on Nuclear Science, 62(6), 3216-3224. doi:10.1109/tns.2015.2480682Nürnberg, F., Schollmeier, M., Brambrink, E., Blažević, A., Carroll, D. C., Flippo, K., … Roth, M. (2009). Radiochromic film imaging spectroscopy of laser-accelerated proton beams. Review of Scientific Instruments, 80(3), 033301. doi:10.1063/1.3086424Oishi, Y., Nayuki, T., Fujii, T., Takizawa, Y., Wang, X., Yamazaki, T., … Andreev, A. A. (2005). Dependence on laser intensity and pulse duration in proton acceleration by irradiation of ultrashort laser pulses on a Cu foil target. Physics of Plasmas, 12(7), 073102. doi:10.1063/1.1943436Nishiuchi, M., Daito, I., Ikegami, M., Daido, H., Mori, M., Orimo, S., … Yoshiyuki, T. (2009). Focusing and spectral enhancement of a repetition-rated, laser-driven, divergent multi-MeV proton beam using permanent quadrupole magnets. Applied Physics Letters, 94(6), 061107. doi:10.1063/1.3078291Antici, P., Fuchs, J., d’ Humières, E., Lefebvre, E., Borghesi, M., Brambrink, E., … Pépin, H. (2007). Energetic protons generated by ultrahigh contrast laser pulses interacting with ultrathin targets. Physics of Plasmas, 14(3), 030701. doi:10.1063/1.2480610Green, J. S., Carroll, D. C., Brenner, C., Dromey, B., Foster, P. S., Kar, S., … Zepf, M. (2010). Enhanced proton flux in the MeV range by defocused laser irradiation. New Journal of Physics, 12(8), 085012. doi:10.1088/1367-2630/12/8/085012Zeil, K., Kraft, S. D., Bock, S., Bussmann, M., Cowan, T. E., Kluge, T., … Schramm, U. (2010). The scaling of proton energies in ultrashort pulse laser plasma acceleration. New Journal of Physics, 12(4), 045015. doi:10.1088/1367-2630/12/4/045015Nishiuchi, M., Daido, H., Yogo, A., Orimo, S., Ogura, K., Ma, J., … Azuma, H. (2008). Efficient production of a collimated MeV proton beam from a polyimide target driven by an intense femtosecond laser pulse. Physics of Plasmas, 15(5), 053104. doi:10.1063/1.2928161Macchi, A., Sgattoni, A., Sinigardi, S., Borghesi, M., & Passoni, M. (2013). Advanced strategies for ion acceleration using high-power lasers. Plasma Physics and Controlled Fusion, 55(12), 124020. doi:10.1088/0741-3335/55/12/124020Fuchs, J., Antici, P., d’ Humières, E., Lefebvre, E., Borghesi, M., Brambrink, E., … Audebert, P. (2005). Laser-driven proton scaling laws and new paths towards energy increase. Nature Physics, 2(1), 48-54. doi:10.1038/nphys199Schwoerer, H., Pfotenhauer, S., Jäckel, O., Amthor, K.-U., Liesfeld, B., Ziegler, W., … Esirkepov, T. (2006). Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature, 439(7075), 445-448. doi:10.1038/nature04492Margarone, D., Klimo, O., Kim, I. J., Prokůpek, J., Limpouch, J., Jeong, T. M., … Korn, G. (2012). Laser-Driven Proton Acceleration Enhancement by Nanostructured Foils. Physical Review Letters, 109(23). doi:10.1103/physrevlett.109.234801Flippo, K. A., d’ Humières, E., Gaillard, S. A., Rassuchine, J., Gautier, D. C., Schollmeier, M., … Hegelich, B. M. (2008). Increased efficiency of short-pulse laser-generated proton beams from novel flat-top cone targets. Physics of Plasmas, 15(5), 056709. doi:10.1063/1.291812

    Ideal cardiovascular health and inflammation in European adolescents: The HELENA study

    Get PDF
    Background and aims Inflammation plays a key role in atherosclerosis and this process seems to appear in childhood. The ideal cardiovascular health index (ICHI) has been inversely related to atherosclerotic plaque in adults. However, evidence regarding inflammation and ICHI in adolescents is scarce. The aim is to assess the association between ICHI and inflammation in European adolescents. Methods and results As many as 543 adolescents (251 boys and 292 girls) from the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study, a cross-sectional multi-center study including 9 European countries, were measured. C-reactive protein (CRP), complement factors C3 and C4, leptin and white blood cell counts were used to compute an inflammatory score. Multilevel linear models and multilevel logistic regression were used to assess the association between ICHI and inflammation controlling by covariates. Higher ICHI was associated with a lower inflammatory score, as well as with several individual components, both in boys and girls (p < 0.01). In addition, adolescents with at least 4 ideal components of the ICHI had significantly lower inflammatory score and lower levels of the study biomarkers, except CRP. Finally, the multilevel logistic regression showed that for every unit increase in the ICHI, the probability of having an inflammatory profile decreased by 28.1% in girls. Conclusion Results from this study suggest that a better ICHI is associated with a lower inflammatory profile already in adolescence. Improving these health behaviors, and health factors included in the ICHI, could play an important role in CVD prevention

    Relationship between self-reported dietary intake and physical activity levels among adolescents: The HELENA study

    Get PDF
    Background Evidence suggests possible synergetic effects of multiple lifestyle behaviors on health risks like obesity and other health outcomes. Therefore it is important to investigate associations between dietary and physical activity behavior, the two most important lifestyle behaviors influencing our energy balance and body composition. The objective of the present study is to describe the relationship between energy, nutrient and food intake and the physical activity level among a large group of European adolescents. Methods The study comprised a total of 2176 adolescents (46.2% male) from ten European cities participating in the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study. Dietary intake and physical activity were assessed using validated 24-h dietary recalls and self-reported questionnaires respectively. Analyses of covariance (ANCOVA) were used to compare the energy and nutrient intake and the food consumption between groups of adolescents with different physical activity levels (1st to 3rd tertile). Results In both sexes no differences were found in energy intake between the levels of physical activity. The most active males showed a higher intake of polysaccharides, protein, water and vitamin C and a lower intake of saccharides compared to less active males. Females with the highest physical activity level consumed more polysaccharides compared to their least active peers. Male and female adolescents with the highest physical activity levels, consumed more fruit and milk products and less cheese compared to the least active adolescents. The most active males showed higher intakes of vegetables and meat, fish, eggs, meat substitutes and vegetarian products compared to the least active ones. The least active males reported the highest consumption of grain products and potatoes. Within the female group, significantly lower intakes of bread and cereal products and spreads were found for those reporting to spend most time in moderate to vigorous physical activity. The consumption of foods from the remaining food groups, did not differ between the physical activity levels in both sexes. Conclusion It can be concluded that dietary habits diverge between adolescents with different self-reported physical activity levels. For some food groups a difference in intake could be found, which were reflected in differences in some nutrient intakes. It can also be concluded that physically active adolescents are not always inclined to eat healthier diets than their less active peers.The HELENA study took place with the financial support of the European Community Sixth RTD Framework Programme (Contract FOOD-CT: 2005-007034). This work was also partially supported by the European Union, in the framework of the Public Health Programme (ALPHA project, Ref: 2006120), the Swedish Council for Working Life and Social Research (FAS), the Spanish Ministry of Education (EX-2007-1124, and EX-2008-0641), and the Spanish Ministry of Health, Maternal, Child Health and Development Network (number RD08/0072) (JPRL, LAM)

    Dietary animal and plant protein intakes and their associations with obesity and cardio-metabolic indicators in European adolescents: The HELENA cross-sectional study

    Get PDF
    Background: Previous studies suggest that dietary protein might play a beneficial role in combating obesity and its related chronic diseases. Total, animal and plant protein intakes and their associations with anthropometry and serum biomarkers in European adolescents using one standardised methodology across European countries are not well documented. Objectives: To evaluate total, animal and plant protein intakes in European adolescents stratified by gender and age, and to investigate their associations with cardio-metabolic indicators (anthropometry and biomarkers). Methods: The current analysis included 1804 randomly selected adolescents participating in the HELENA study (conducted in 2006-2007) aged 12.5-17.5 y (47% males) who completed two non-consecutive computerised 24-h dietary recalls. Associations between animal and plant protein intakes, and anthropometry and serum biomarkers were examined with General linear Model multivariate analysis. Results: Average total protein intake exceeded the recommendations of World Health Organization and European Food Safety Authority. Mean total protein intake was 96 g/d (59% derived from animal protein). Total, animal and plant protein intakes (g/d) were significantly lower in females than in males and total and plant protein intakes were lower in younger participants (12.5-14.9 y). Protein intake was significantly lower in underweight subjects and higher in obese ones; the direction of the relationship was reversed after adjustments for body weight (g/(kg.d)). The inverse association of plant protein intakes was stronger with BMI z-score and body fat percentage (BF%) compared to animal protein intakes. Additionally, BMI and BF% were positively associated with energy percentage of animal protein. Conclusions: This sample of European adolescents appeared to have adequate total protein intake. Our findings suggest that plant protein intakes may play a role in preventing obesity among European adolescents. Further longitudinal studies are needed to investigate the potential beneficial effects observed in this study in the prevention of obesity and related chronic diseases

    Evaluation of iron status in European adolescents through biochemical iron indicators: the HELENA Study

    Get PDF
    BACKGROUND/OBJECTIVES: To assess the iron status among European adolescents through selected biochemical parameters in a cross-sectional study performed in 10 European cities. SUBJECTS/METHODS: Iron status was defined utilising biochemical indicators. Iron depletion was defined as low serum ferritin (SF8.5 mg/l) plus iron depletion. Iron deficiency anaemia (IDA) was defined as ID with haemoglobin (Hb) below the WHO cutoff for age and sex: 12.0 g/dl for girls and for boys aged 12.5-14.99 years and 13.0 g/dl for boys aged ≥15 years. Enzyme linked immunosorbent assay was used as analytical method for SF, sTfR and C-reactive protein (CRP). Subjects with indication of inflammation (CRP >5 mg/l) were excluded from the analyses. A total of 940 adolescents aged 12.5-17.49 years (438 boys and 502 girls) were involved. RESULTS: The percentage of iron depletion was 17.6%, significantly higher in girls (21.0%) compared with boys (13.8%). The overall percentage of ID and IDA was 4.7 and 1.3%, respectively, with no significant differences between boys and girls. A correlation was observed between log (SF) and Hb (r = 0.36, P < 0.01), and between log (sTfR) and mean corpuscular haemoglobin (r = -0.30, P < 0.01). Iron body stores were estimated on the basis of log (sTfR/SF). A higher percentage of negative values of body iron was recorded in girls (16.5%) with respect to boys (8.3%), and body iron values tended to increase with age in boys, whereas the values remained stable in girls. CONCLUSIONS: To ensure adequate iron stores, specific attention should be given to girls at European level to ensure that their dietary intake of iron is adequate.status: publishe
    corecore