223 research outputs found

    RVG29-Functionalized Lipid Nanoparticles for Quercetin Brain Delivery and Alzheimers Disease

    Get PDF
    Purpose: Lipid nanoparticles (SLN and NLC) were functionalized with the RVG29 peptide in order to target the brain and increase the neuronal uptake through the nicotinic acetylcholine receptors. These nanosystems were loaded with quercetin to take advantage of its neuroprotective properties mainly for Alzheimer's disease. Methods: The functionalization of nanoparticles with RVG29 peptide was confirmed by NMR and FTIR. Their morphology was assessed by transmission electron microscopy and nanoparticles size, polydispersity and zeta potential were determined by dynamic light scattering. The in vitro validation tests were conducted in hCMEC/D3 cells, a human blood-brain barrier model and thioflavin T binding assay was conducted to assess the process of amyloid-beta peptide fibrillation typical of Alzheimer's disease. Results: RVG29-nanoparticles displayed spherical morphology and size below 250 nm, which is compatible with brain applications. Zeta potential values were between −20 and −25 mV. Quercetin entrapment efficiency was generally higher than 80% and NLC nanoparticles were able to encapsulate up to 90%. The LDH assay showed that there is no cytotoxicity in hCMEC/D3 cell line and RVG29-nanoparticles clearly increased in 1.5-fold the permeability across the in vitro model of blood-brain barrier after 4 h of incubation compared with non-functionalized nanoparticles. Finally, this nanosystem was capable of inhibiting amyloid-beta aggregation in thioflavin T binding assay, suggesting its great potential for neuroprotection. Conclusions: RVG29-nanoparticles that simultaneously target the blood-brain barrier and induce neurons protection against amyloid-beta fibrillation proved to be an efficient way of quercetin delivery and a promising strategy for future approaches in Alzheimer's disease. [Figure not available: see fulltext.]. (c) 2020, Springer Science+Business Media, LLC, part of Springer Nature

    Valorization of Seaweed Wracks : Inclusion as Additive in Diets for Grass Carp (Ctenopharyngodon idella)

    Get PDF
    Macroalgae have been recently described as a potential ingredient for aquafeeds, exerting several physiological benefits. Grass carp (Ctenopharyngodon idella) is a freshwater species, which has been the major fish species produced in the world in the last years. In order to determine the potential use of macroalgal wracks in fish feeding, C. idella juveniles were fed with an extruded commercial diet (CD) or the CD supplemented with 7% of a wind dried-powder (1 mm) from either a multispecific macroalgal wrack (CD + MU7) or a monospecific macroalgal wrack (CD + MO7) obtained from Gran Canaria island (Spain) coasts. After 100 days of feeding, survival, fish weight, and body indexes were determined, and muscle, liver, and digestive tract samples were collected. The total antioxidant capacity of macroalgal wracks was analyzed by assesing the antioxidant defense response and digestive enzymes activity in fish. Finally, muscle proximate composition, lipid classes (LC), and fatty acid (FA) profiles were also studied. Our results suggest that dietary inclusion of macroalgal wracks does not have negative effects on growth, proximate, and lipid composition, antioxidative status, or digestive capacity of C. idella. In fact, both macroalgal wracks caused a general lower fat deposition, and the multispecific wrack enhanced catalase activity in the liver.This study was funded by the European Interreg Programme 2014-2020 (MACBIOBLUE; MAC/1.1b/086). FCT–Fundação para a Ciência e a Tecnologia and as applicable cofinanced by the FEDER within the PT2020 Partnership Agreement by funding the cE3c centre (UID/BIA/00329/2019).info:eu-repo/semantics/publishedVersio

    Gold nanoparticles for targeting varlitinib to human pancreatic cancer cells

    Get PDF
    Colloidal gold nanoparticles are targeting probes to improve varlitinib delivery into cancer cells. The nanoconjugates were designed by the bioconjugation of pegylated gold nanoparticles with varlitinib via carbodiimide-mediated cross-linking and characterized by infrared and X-ray photoelectron spectroscopy. The drug release response shows an initial delay and a complete drug release after 72 h is detected. In vitro experiments with MIA PaCa-2 cells corroborate that PEGAuNPsVarl conjugates increase the varlitinib toxic effect at very low concentrations (IC50 = 80 nM) if compared with varlitinib alone (IC50 = 259 nM). Our results acknowledge a decrease of drug side effects in normal cells and an enhancement of drug efficacy against to the pancreatic cancer cells reported. (c) 2018 by the authors. Licensee MDPI, Basel, Switzerland

    Nanoemulsions of β-carotene using a high-energy emulsification-evaporation technique

    Get PDF
    Nanoemulsions of β-carotene were prepared using a high-energy emulsification-evaporation technique based on a 23 level factorial design. Results show that it is possible to obtain dispersions at a nanoscale range. Process parameters such as time and shear rate of homogenization affected significantly particle size distribution in terms of volume-weighted mean diameter and surface-weighted mean diameter. The obtained nanoemulsions presented a volume-surface diameter ranging from 9 to 280 nm immediately after the production of particles, displaying in all cases a monomodal size distribution. Those nanoemulsions showed a good physical stability during 21 days storage. The stability was evaluated by the maintenance of size distribution. However, β-carotene retention inside the micelles and color were affected by storage. Processing conditions also influenced storage stability.Fundação para a Ciência e a Tecnologia (FCT)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasil)Conselho Nacional de Ciência e Tecnologia (CNPq, Brasil

    A comparison of production control systems in a flexible flow shop

    Get PDF
    Production control in make-to-order must address the companies’ need for short delivery times and on-time deliveries. Several production control systems may be used to meet these needs. This paper presents a simulation study to evaluate the delivery performance of the TKS, GKS and POLCA production co ntrol systems, in the context of a make-to-order flexible flow shop. Since TKS is used for make-to-stock manufacturing, an adaptation of it is made to use in make-to-order. Results of a simulation study show that the adapted TKS outperforms POLCA, but performs worse than GKS. The study is a contribution for the alignment of production control theory to the industrial practice.This work had the financial support of FCT- Fundacao para a Ciencia e Tecnologia of Portugal under the project PEst2015-2020: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Wild dogs at stake: deforestation threatens the only Amazon endemic canid, the short-eared dog (Atelocynus microtis)

    Get PDF
    The persistent high deforestation rate and fragmentation of the Amazon forests are the main threats to their biodiversity. To anticipate and mitigate these threats, it is important to understand and predict how species respond to the rapidly changing landscape. The short-eared dog Atelocynus microtis is the only Amazon-endemic canid and one of the most understudied wild dogs worldwide. We investigated short-eared dog habitat associations on two spatial scales. First, we used the largest record database ever compiled for short-eared dogs in combination with species distribution models to map species habitat suitability, estimate its distribution range and predict shifts in species distribution in response to predicted deforestation across the entire Amazon (regional scale). Second, we used systematic camera trap surveys and occupancy models to investigate how forest cover and forest fragmentation affect the space use of this species in the Southern Brazilian Amazon (local scale). Species distribution models suggested that the short-eared dog potentially occurs over an extensive and continuous area, through most of the Amazon region south of the Amazon River. However, approximately 30% of the short-eared dog's current distribution is expected to be lost or suffer sharp declines in habitat suitability by 2027 (within three generations) due to forest loss. This proportion might reach 40% of the species distribution in unprotected areas and exceed 60% in some interfluves (i.e. portions of land separated by large rivers) of the Amazon basin. Our local-scale analysis indicated that the presence of forest positively affected short-eared dog space use, while the density of forest edges had a negative effect. Beyond shedding light on the ecology of the short-eared dog and refining its distribution range, our results stress that forest loss poses a serious threat to the conservation of the species in a short time frame. Hence, we propose a re-assessment of the short-eared dog's current IUCN Red List status (Near Threatened) based on findings presented here. Our study exemplifies how data can be integrated across sources and modelling procedures to improve our knowledge of relatively understudied species
    • …
    corecore