162 research outputs found
Cartas climáticas dos municípios da Bacia do Paraná 3.
As cartas climáticas dos municípios da Bacia do Paraná 3, estado do Paraná, trazem a cartografia das variáveis meteorológicas macroclimáticas em escala semidetalhada da região, apresentadas em mapas feitos em sistemas de informações geográficas, na escala 1:25.000. O conhecimento dos padrões espaciais das principais variáveis climáticas é de considerável relevância para o planejamento das atividades agrícolas, florestais e pecuária, auxiliando na escolha das espécies mais bem adaptadas ao tipo de clima dos municípios, em uma região onde a distribuição espacial das variáveis é bastante desigual. Espera-se que, com a disponibilização destas cartas climáticas, seja possível auxiliar a comunidade dos municípios integrantes da Bacia do Paraná 3 no planejamento de suas atividades rurais, trazendo importantes informações sobre o clima da região.bitstream/item/176417/1/Livro-Doc-314-1536-final-corrigido-7mai18.pd
Effects of nano particles on antigen-related airway inflammation in mice
BACKGROUND: Particulate matter (PM) can exacerbate allergic airway diseases. Although health effects of PM with a diameter of less than 100 nm have been focused, few studies have elucidated the correlation between the sizes of particles and aggravation of allergic diseases. We investigated the effects of nano particles with a diameter of 14 nm or 56 nm on antigen-related airway inflammation. METHODS: ICR mice were divided into six experimental groups. Vehicle, two sizes of carbon nano particles, ovalbumin (OVA), and OVA + nano particles were administered intratracheally. Cellular profile of bronchoalveolar lavage (BAL) fluid, lung histology, expression of cytokines, chemokines, and 8-hydroxy-2'-deoxyguanosine (8-OHdG), and immunoglobulin production were studied. RESULTS: Nano particles with a diameter of 14 nm or 56 nm aggravated antigen-related airway inflammation characterized by infiltration of eosinophils, neutrophils, and mononuclear cells, and by an increase in the number of goblet cells in the bronchial epithelium. Nano particles with antigen increased protein levels of interleukin (IL)-5, IL-6, and IL-13, eotaxin, macrophage chemoattractant protein (MCP)-1, and regulated on activation and normal T cells expressed and secreted (RANTES) in the lung as compared with antigen alone. The formation of 8-OHdG, a proper marker of oxidative stress, was moderately induced by nano particles or antigen alone, and was markedly enhanced by antigen plus nano particles as compared with nano particles or antigen alone. The aggravation was more prominent with 14 nm of nano particles than with 56 nm of particles in overall trend. Particles with a diameter of 14 nm exhibited adjuvant activity for total IgE and antigen-specific IgG(1 )and IgE. CONCLUSION: Nano particles can aggravate antigen-related airway inflammation and immunoglobulin production, which is more prominent with smaller particles. The enhancement may be mediated, at least partly, by the increased local expression of IL-5 and eotaxin, and also by the modulated expression of IL-13, RANTES, MCP-1, and IL-6
Convergent Sets of Data from In Vivo and In Vitro Methods Point to an Active Role of Hsp60 in Chronic Obstructive Pulmonary Disease Pathogenesis
BACKGROUND: It is increasingly clear that some heat shock proteins (Hsps) play a role in inflammation. Here, we report results showing participation of Hsp60 in the pathogenesis of chronic obstructive pulmonary diseases (COPD), as indicated by data from both in vivo and in vitro analyses.
METHODS AND RESULTS: Bronchial biopsies from patients with stable COPD, smoker controls with normal lung function, and non-smoker controls were studied. We quantified by immunohistochemistry levels of Hsp10, Hsp27, Hsp40, Hsp60, Hsp70, Hsp90, and HSF-1, along with levels of inflammatory markers. Hsp10, Hsp40, and Hsp60 were increased during progression of disease. We found also a positive correlation between the number of neutrophils and Hsp60 levels. Double-immunostaining showed that Hsp60-positive neutrophils were significantly increased in COPD patients. We then investigated in vitro the effect on Hsp60 expression in bronchial epithelial cells (16HBE) caused by oxidative stress, a hallmark of COPD mucosa, which we induced with H\u2082O\u2082. This stressor determined increased levels of Hsp60 through a gene up-regulation mechanism involving NFkB-p65. Release of Hsp60 in the extracellular medium by the bronchial epithelial cells was also increased after H\u2082O\u2082 treatment in the absence of cell death.
CONCLUSIONS: This is the first report clearly pointing to participation of Hsps, particularly Hsp60, in COPD pathogenesis. Hsp60 induction by NFkB-p65 and its release by epithelial cells after oxidative stress can have a role in maintaining inflammation, e.g., by stimulating neutrophils activity. The data open new scenarios that might help in designing efficacious anti-inflammatory therapies centered on Hsp60 and applicable to COP
The role of virulence factors in the outcome of staphylococcal peritonitis in CAPD patients
<p>Abstract</p> <p>Background</p> <p>Peritonitis continues to be the most frequent cause of peritoneal dialysis (PD) failure, with an important impact on patient mortality. Gram-positive cocci such as <it>Staphylococcus epidermidis</it>, other coagulase-negative staphylococci (CoNS), and <it>Staphylococcus aureus </it>are the most frequent etiological agents of PD-associated peritonitis worldwide. The objective of the present study was to compare peritonitis caused by <it>S. aureus </it>and CoNS and to evaluate the factors influencing outcome.</p> <p>Methods</p> <p>Records of 86 new episodes of staphylococcal peritonitis that occurred between 1996 and 2000 in the Dialysis unit of a single university hospital were studied (35 due to <it>S. aureus</it>, 24 to <it>S. epidermidis </it>and 27 to other CoNS). The production of slime, lipase, lecithinase, nuclease (DNAse), thermonuclease (TNAse), α- and β-hemolysin, enterotoxins (SEA, SEB, SEC, SED) and toxic shock syndrome toxin-1 (TSST-1) was studied in <it>S. aureus </it>and CoNS. Antimicrobial susceptibility was evaluated based on the minimal inhibitory concentration determined by the E-test. Outcome predictors were evaluated by two logistic regression models.</p> <p>Results</p> <p>The oxacillin susceptibility rate was 85.7% for <it>S. aureus</it>, 41.6% for <it>S. epidermidis</it>, and 51.8% for other CoNS (p = 0.001). Production of toxins and enzymes, except for enterotoxin A and α-hemolysin, was associated with <it>S. aureus </it>episodes (p < 0.001), whereas slime production was positive in 23.5% of CoNS and 8.6% of <it>S. aureus </it>strains (p = 0.0047). The first model did not include enzymes and toxins due to their association with <it>S. aureus</it>. The odds of resolution were 9.5 times higher for <it>S. epidermidis </it>than for <it>S. aureus </it>(p = 0.02) episodes, and were similar for <it>S. epidermidis </it>and other CoNS (p = 0.8). The resolution odds were 68 times higher for non-slime producers (p = 0.001) and were not influenced by oxacillin resistance among vancomycin-treated cases (p = 0.89). In the second model, the resolution rate was similar for <it>S. aureus </it>and <it>S. epidermidis </it>(p = 0.70), and slime (p = 0.001) and α-hemolysin (p = 0.04) production were independent predictors of non-resolution.</p> <p>Conclusion</p> <p>Bacterial species and virulence factors rather than antibiotic resistance influence the outcome of staphylococcal peritonitis.</p
Urinary Exosomal microRNA-451-5p Is a Potential Early Biomarker of Diabetic Nephropathy in Rats
Non-invasive renal signatures can help in serial monitoring of diabetic patients. We tested whether urinary exosomal (UE) microRNA (miR) analysis could non-invasively predict renal pathology in diabetic rats during the course of diabetes. Diabetes mellitus (DM) was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg body weight). Non-diabetic control (CTRL) rats were injected with vehicle. Insulin (INS) treatment (5U/d, s.c.) was provided to 50% of the DM rats. Urine samples were collected at weeks 3, 6, and 9 following injections and UE prepared. An increase in miR-451-5p and miR-16, observed by pilot small RNA sequencing of UE RNA, was confirmed by quantitative real-time polymerase chain reaction (qPCR) and selected for further study. Subsets of rats were euthanized after 3, 6, and 9 weeks of diabetes for renal pathology analysis, including
determination of the tubulointerstitial fibrotic index (TFI) and glomerulosclerotic index (GI) scores. qPCR showed a substantial rise in miR-451-5p in UE from DM rats during thecourse of diabetes, with a significant rise (median fold change >1000) between 3 and 6 weeks. Moreover, UE miR-451-5p at 6 weeks predicted urine albumin at 9 weeks (r = 0.76).
A delayed but significant rise was also observed for miR-16. In contrast, mean urine albumin only increased 21% between 3 and 6 weeks (non-significant rise), and renal TFI and GI were unchanged till 9 weeks. Renal expression of miR-451-5p and miR-16 (at 10 weeks) did not correlate with urine levels, and moreover, was negatively associated with indices of renal pathology (r�-0.70, p = 0.005 for TFI and r�-0.6, p�0.02 for GI). Overall, a relative elevation in renal miR-451-5p and miR-16 in diabetes appeared protective against diabetes- induced kidney fibrosis; while UE miR-451-5p may hold prognostic value as an earlyand sensitive non-invasive indicator of renal diseas
A Small RNA Controls Expression of the Chitinase ChiA in Listeria monocytogenes
In recent years, more than 60 small RNAs (sRNAs) have been identified in the gram-positive human pathogen Listeria monocytogenes, but their putative roles and mechanisms of action remain largely unknown. The sRNA LhrA was recently shown to be a post-transcriptional regulator of a single gene, lmo0850, which encodes a small protein of unknown function. LhrA controls the translation and degradation of the lmo0850 mRNA by an antisense mechanism, and it depends on the RNA chaperone Hfq for efficient binding to its target. In the present study, we sought to gain more insight into the functional role of LhrA in L. monocytogenes. To this end, we determined the effects of LhrA on global-wide gene expression. We observed that nearly 300 genes in L. monocytogenes are either positively or negatively affected by LhrA. Among these genes, we identified lmo0302 and chiA as direct targets of LhrA, thus establishing LhrA as a multiple target regulator. Lmo0302 encodes a hypothetical protein with no known function, whereas chiA encodes one of two chitinases present in L. monocytogenes. We show here that LhrA acts as a post-transcriptional regulator of lmo0302 and chiA by interfering with ribosome recruitment, and we provide evidence that both LhrA and Hfq act to down-regulate the expression of lmo0302 and chiA. Furthermore, in vitro binding experiments show that Hfq stimulates the base pairing of LhrA to chiA mRNA. Finally, we demonstrate that LhrA has a negative effect on the chitinolytic activity of L. monocytogenes. In marked contrast to this, we found that Hfq has a stimulating effect on the chitinolytic activity, suggesting that Hfq plays multiple roles in the complex regulatory pathways controlling the chitinases of L. monocytogenes
Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine
[This corrects the article DOI: 10.1186/s13054-016-1208-6.]
Improvement of renal oxidative stress markers after ozone administration in diabetic nephropathy in rats
<p>Abstract</p> <p>Background</p> <p>Several complications of diabetes mellitus (DM) e.g. nephropathy (DN) have been linked to oxidative stress. Ozone, by means of oxidative preconditioning, may exert its protective effects on DN.</p> <p>Aim</p> <p>The aim of the present work is to study the possible role of ozone therapy in ameliorating oxidative stress and inducing renal antioxidant defence in streptozotocin (STZ)-induced diabetic rats.</p> <p>Methods</p> <p>Six groups (n = 10) of male Sprague Dawley rats were used as follows: Group C: Control group. Group O: Ozone group, in which animals received ozone intraperitoneally (i.p.) (1.1 mg/kg). Group D: Diabetic group, in which DM was induced by single i.p. injections of streptozotocin (STZ). Group DI: Similar to group D but animals also received subcutaneous (SC) insulin (0.75 IU/100 gm BW.). Group DO: In which diabetic rats received the same dose of ozone, 48 h after induction of diabetes. Group DIO, in which diabetic rats received the same doses of insulin and ozone, respectively. All animals received daily treatment for six weeks. At the end of the study period (6 weeks), blood pressure, blood glycosylated hemoglobin (HbA<sub>1c</sub>), serum creatinine, blood urea nitrogen (BUN), kidney tissue levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GPx), aldose reductase (AR) activities and malondialdehyde (MDA) concentration were measured.</p> <p>Results</p> <p>Induction of DM in rats significantly elevated blood pressure, HbA<sub>1c</sub>, BUN, creatinine and renal tissue levels of MDA and AR while significantly reducing SOD, CAT and GPx activities. Either Insulin or ozone therapy significantly reversed the effects of DM on all parameters; in combination (DIO group), they caused significant improvements in all parameters in comparison to each alone.</p> <p>Conclusions</p> <p>Ozone administration in conjunction with insulin in DM rats reduces oxidative stress markers and improves renal antioxidant enzyme activity which highlights its potential uses in the regimen for treatment of diabetic patients.</p
Novel insights into the aetiology and pathophysiology of increased airway inflammation during COPD exacerbations
Airway inflammation increases during acute exacerbations of COPD. Extrinsic factors, such as airway infections, increased air pollution, and intrinsic factors, such as increased oxidative stress and altered immunity may contribute to this increase. The evidence for this and the potential mechanisms by which various aetiological agents increase inflammation during COPD exacerbations is reviewed. The pathophysiologic consequences of increased airway inflammation during COPD exacerbations are also discussed. This review aims to establish a cause and effect relationship between etiological factors of increased airway inflammation and COPD exacerbations based on recently published data. Although it can be speculated that reducing inflammation may prevent and/or treat COPD exacerbations, the existing anti-inflammatory treatments are modestly effective
- …