146 research outputs found

    Evaluation of peroxidative stress of cancer cells in vitro by real time quantification of volatile aldehydes in culture headspace

    Get PDF
    Rationale Peroxidation of lipids in cellular membranes results in the release of volatile organic compounds (VOCs), including saturated aldehydes. The real‐time quantification of trace VOCs produced by cancer cells during peroxidative stress presents a new challenge to non‐invasive clinical diagnostics, which as described here, we have met with some success. Methods A combination of selected ion flow tube mass spectrometry (SIFT‐MS), a technique that allows rapid, reliable quantification of VOCs in humid air and liquid headspace, and electrochemistry to generate reactive oxygen species (ROS) in vitro has been used. Thus, VOCs present in the headspace of CALU‐1 cancer cell line cultures exposed to ROS have been monitored and quantified in real time using SIFT‐MS. Results The CALU‐1 lung cancer cells were cultured in 3D collagen to mimic in vivo tissue. Real‐time SIFT‐MS analyses focused on the volatile aldehydes: propanal, butanal, pentanal, hexanal, heptanal and malondialdehyde (propanedial), that are expected to be products of cellular membrane peroxidation. All six aldehydes were identified in the culture headspace, each reaching peak concentrations during the time of exposure to ROS and eventually reducing as the reactants were depleted in the culture. Pentanal and hexanal were the most abundant, reaching concentrations of a few hundred parts‐per‐billion by volume, ppbv, in the culture headspace. Conclusions The results of these experiments demonstrate that peroxidation of cancer cells in vitro can be monitored and evaluated by direct real‐time analysis of the volatile aldehydes produced. The combination of adopted methodology potentially has value for the study of other types of VOCs that may be produced by cellular damage

    Nailfold Videocapillaroscopic Features and Other Clinical Risk Factors for Digital Ulcers in Systemic Sclerosis: A Multicenter, Prospective Cohort Study

    Get PDF
    OBJECTIVE: To identify nailfold videocapillaroscopic and other clinical risk factors for new digital ulcers (DUs) in a 6-month period in patients with systemic sclerosis (SSc), the videoCAPillaroscopy (CAP) study. METHODS: Overall 623 patients with SSc from 59 centers (14 countries) were stratified into two groups: "DU History" and "No-DU History". At enrollment, patients underwent detailed nailfold videocapillaroscopic evaluation and an assessment of demographics, DU status, and clinical and SSc characteristics. Risk factors for developing new DUs were assessed using univariable and multivariable logistic regression analyses. RESULTS: Of the "DU History" group (n = 468), 79.5% were female, the mean age was 54.0 ± 13.7 years, 59.8% had limited cutaneous SSc, and 22% developed a new DU during follow-up. The strongest risk factors for new DUs identified by multivariable logistic regression (MLR) in the "DU History" group included: mean number of capillaries/mm in the middle finger of the dominant hand, number of DUs (0, 1, 2, ≄3), and presence of critical digital ischemia. The receiver operating characteristic area under the curve (ROC-AUC) (95% confidence interval [CI]) of the final MLR model was 0.738 (0.681-0.795). Internal validation through bootstrap generated a ROC-AUC (95% CI) of 0.633 (0.510-0.756). CONCLUSION: This international, prospective study including detailed nailfold videocapillaroscopic evaluation and extensive clinical characterization of patients with SSc identified the mean number of capillaries/mm in the middle finger of the dominant hand, number of DUs and presence of critical digital ischemia at enrollment as risk factors for the development of new DUs. This article is protected by copyright. All rights reserved

    Socioeconomic disparities in changes to preterm birth and stillbirth rates during the first year of the COVID-19 pandemic: a study of 21 European countries

    Get PDF
    Background: Despite concerns about worsening pregnancy outcomes resulting from healthcare restrictions, economic difficulties and increased stress during the COVID-19 pandemic, preterm birth (PTB) rates declined in some countries in 2020, while stillbirth rates appeared stable. Like other shocks, the pandemic may have exacerbated existing socioeconomic disparities in pregnancy, but this remains to be established. Our objective was to investigate changes in PTB and stillbirth by socioeconomic status (SES) in European countries. Methods: The Euro-Peristat network implemented this study within the Population Health Information Research Infrastructure (PHIRI) project. A common data model was developed to collect aggregated tables from routine birth data for 2015-2020. SES was based on mother's educational level or area-level deprivation/maternal occupation if education was unavailable and harmonized into low, medium and high SES. Country-specific relative risks (RRs) of PTB and stillbirth for March to December 2020, adjusted for linear trends from 2015 to 2019, by SES group were pooled using random effects meta-analysis. Results: Twenty-one countries provided data on perinatal outcomes by SES. PTB declined by an average 4% in 2020 {pooled RR: 0.96 [95% confidence intervals (CIs): 0.94-0.97]} with similar estimates across all SES groups. Stillbirths rose by 5% [RR: 1.05 (95% CI: 0.99-1.10)], with increases of between 3 and 6% across the three SES groups, with overlapping confidence limits. Conclusions: PTB decreases were similar regardless of SES group, while stillbirth rates rose without marked differences between groups.This research was financially supported by the European Union’s Horizon 2020 research and innovation programme under the grant agreement No. 101018317 (Population Health Information Research Infrastructure [PHIRI])

    Caracol, Belize, and Changing Perceptions of Ancient Maya Society

    Full text link

    Female sexual preferences toward conspecific and hybrid male mating calls in two species of polygynous deer, Cervus elaphus and C. nippon

    Get PDF
    The behavioral processes at the basis of hybridization and introgression are understudied in terrestrial mammals. We use a unique model to test the role of sexual signals as a reproductive barrier to introgression by investigating behavioral responses to male sexual calls in estrous females of two naturally allopatric but reproductively compatible deer species, red deer and sika deer. Previous studies demonstrated asymmetries in acoustic species discrimination between these species: most but not all female red deer prefer conspecific over sika deer male calls while female sika deer exhibit no preference differences. Here, we extend this examination of acoustic species discrimination to the role of male sexual calls in introgression between parent species and hybrids. Using two-speaker playback experiments, we compared the preference responses of estrous female red and sika deer to male sexual calls from conspecifics versus red × sika hybrids. These playbacks simulate early secondary contact between previously allopatric species after hybridization has occurred. Based on previous conspecific versus heterospecific playbacks, we predicted that most female red deer would prefer conspecific calls while female sika deer would show no difference in their preference behaviors toward conspecific and hybrid calls. However, results show that previous asymmetries did not persist as neither species exhibited more preferences for conspecific over hybrid calls. Thus, vocal behavior is not likely to deter introgression between these species during the early stages of sympatry. On a wider scale, weak discrimination against hybrid sexual signals could substantially contribute to this important evolutionary process in mammals and other taxa

    Parallel Profiling of Fission Yeast Deletion Mutants for Proliferation and for Lifespan During Long-Term Quiescence

    Get PDF
    Genetic factors underlying aging are remarkably conserved from yeast to human. The fission yeast Schizosaccharomyces pombe is an emerging genetic model to analyze cellular aging. Chronological lifespan (CLS) has been studied in stationary-phase yeast cells depleted for glucose, which only survive for a few days. Here, we analyzed CLS in quiescent S. pombe cells deprived of nitrogen, which arrest in a differentiated, G0-like state and survive for more than 2 months. We applied parallel mutant phenotyping by barcode sequencing (Bar-seq) to assay pooled haploid deletion mutants as they aged together during longterm quiescence. As expected, mutants with defects in autophagy or quiescence were under-represented or not detected. Lifespan scores could be calculated for 1199 mutants. We focus the discussion on the 48 most long-lived mutants, including both known aging genes in other model systems and genes not previously implicated in aging. Genes encoding membrane proteins were particularly prominent as pro-aging factors. We independently verified the extended CLS in individual assays for 30 selected mutants, showing the efficacy of the screen. We also applied Bar-seq to profile all pooled deletion mutants for proliferation under a standard growth condition. Unlike for stationary-phase cells, no inverse correlation between growth and CLS of quiescent cells was evident. These screens provide a rich resource for further studies, and they suggest that the quiescence model can provide unique, complementary insights into cellular aging

    Event-by-event correlations between Λ\Lambda (Λˉ\bar{\Lambda}) hyperon global polarization and handedness with charged hadron azimuthal separation in Au+Au collisions at sNN=27 GeV\sqrt{s_{\text{NN}}} = 27 \text{ GeV} from STAR

    Full text link
    Global polarizations (PP) of Λ\Lambda (Λˉ\bar{\Lambda}) hyperons have been observed in non-central heavy-ion collisions. The strong magnetic field primarily created by the spectator protons in such collisions would split the Λ\Lambda and Λˉ\bar{\Lambda} global polarizations (ΔP=PΛ−PΛˉ<0\Delta P = P_{\Lambda} - P_{\bar{\Lambda}} < 0). Additionally, quantum chromodynamics (QCD) predicts topological charge fluctuations in vacuum, resulting in a chirality imbalance or parity violation in a local domain. This would give rise to an imbalance (Δn=NL−NR⟹NL+NR⟩≠0\Delta n = \frac{N_{\text{L}} - N_{\text{R}}}{\langle N_{\text{L}} + N_{\text{R}} \rangle} \neq 0) between left- and right-handed Λ\Lambda (Λˉ\bar{\Lambda}) as well as a charge separation along the magnetic field, referred to as the chiral magnetic effect (CME). This charge separation can be characterized by the parity-even azimuthal correlator (Δγ\Delta\gamma) and parity-odd azimuthal harmonic observable (Δa1\Delta a_{1}). Measurements of ΔP\Delta P, Δγ\Delta\gamma, and Δa1\Delta a_{1} have not led to definitive conclusions concerning the CME or the magnetic field, and Δn\Delta n has not been measured previously. Correlations among these observables may reveal new insights. This paper reports measurements of correlation between Δn\Delta n and Δa1\Delta a_{1}, which is sensitive to chirality fluctuations, and correlation between ΔP\Delta P and Δγ\Delta\gamma sensitive to magnetic field in Au+Au collisions at 27 GeV. For both measurements, no correlations have been observed beyond statistical fluctuations.Comment: 10 pages, 10 figures; paper from the STAR Collaboratio
    • 

    corecore