37 research outputs found

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    THE ROLE OF MINERAL NUTRITION ON YIELDS AND FRUIT QUALITY IN GRAPEVINE, PEAR AND APPLE

    Get PDF
    ABSTRACT Fertilization of temperate fruit trees, such as grapevine ( Vitis spp.), apple ( Malus domestica), and pear ( Pyrus communis) is an important tool to achive maximum yield and fruit quality. Fertilizers are provided when soil fertility does not allow trees to express their genetic potential, and time and rate of application should be scheduled to promote fruit quality. Grapevine berries, must and wine quality are affected principally by N, that regulate the synthesis of some important compounds, such as anthocyanins, which are responsible for coloring of the must and the wine. Fermenation of the must may stop in grapes with low concentration of N because N is requested in high amount by yeasts. An N excess may increase the pulp to peel ratio, diluting the concentration of anthocyanins and promoting the migration of anthocyanins from berries to the growing plant organs; a decrease of grape juice soluble solid concentration is also expected because of an increase in vegetative growth. Potassium is also important for wine quality contributing to adequate berry maturation, concentration of sugars, synthesis of phenols and the regulation of pH and acidity. In apple and pear, Ca and K are important for fruit quality and storage. Potassium is the most important component of fruit, however, any excess should be avoided and an adequate K:Ca balance should be achieved. Adequate concentration of Ca in the fruit prevents pre- and post-harvest fruit disorders and, at the same time, increases tolerance to pathogens. Although N promotes adequate growth soil N availability should be monitored to avoid excessive N uptake that may decrease fruit skin color and storability

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Indoleamine 2,3-Dioxygenase 1 (IDO1) Is Up-Regulated in Thyroid Carcinoma and Drives the Development of an Immunosuppressant Tumor Microenvironment

    No full text
    Context: Indoleamine 2,3-dioxygenase 1 (IDO1) is a single chain oxido-reductase that catalyzes tryptophan degradation to kynurenine. In cancer, it appears to exert an immunosuppressive function as part of an acquired mechanism of immune escape mediated by the inhibition of lymphocyte proliferation and survival and by the induction of FoxP3+ T regulatory cells. Objective: To evaluate IDO1 expression in thyroid carcinoma and demonstrate its immunosuppressive function in the context of thyroid tumors. Setting: IDO1 expression was evaluated by QPCR in 105 papillary thyroid carcinomas (PTCs), 11 medullary thyroid carcinomas (MTCs), 6 anaplastic thyroid carcinomas (ATCs) and 5 thyroid carcinoma cell lines (TCCLs), by immunohistochemistry (IHC) in 55 PTCs and by western blotting in 5 TCCLs. FoxP3+ Treg lymphocyte density was evaluated by IHC in 29 PTCs. IDO1 inhibitory effect on lymphocyte proliferation was tested in co-culture experiments of TCCLs and activated lymphocytes. Results: IDO1 mRNA expression resulted significantly higher in all the analyzed thyroid carcinoma histotypes compared to normal thyroid. Interestingly, an increase of IDO1 mRNA expression magnitude could be observed with gain of aggressiveness (PTC & MTC 6a ATC). In PTCs, IDO1 mRNA expression magnitude correlated with IDO1 immunostaining intensity in cancer cells and with FoxP3+ Treg lymphocyte density in the tumor microenvironment. IDO1 was expressed in human thyroid cancer cell lines in vitro and FTC133 cells showed high kynurenine concentration in the conditioned medium and a strong suppressive action on the proliferation of activated lymphocytes in co-culture experiments. Conclusions: For the first time, this study demonstrates a pivotal role of IDO1 in the suppression of lymphocyte function in thyroid carcinoma microenvironment

    INDOLEAMINE 2,3-DIOXYGENASE 1 (IDO1) IS UPREGULATED IN THYROID CARCINOMA AND DRIVES THE DEVELOPMENT OF AN IMMUNOSUPPRESSANT TUMOR MICROENVIRONMENT.

    No full text
    CONTEXT: Indoleamine 2,3-dioxygenase 1 (IDO1) is a single chain oxidoreductase that catalyzes tryptophan degradation to kynurenine. In cancer, it appears to exert an immunosuppressive function as part of an acquired mechanism of immune escape mediated by the inhibition of lymphocyte proliferation and survival and by the induction of FoxP3+ T regulatory cells. OBJECTIVE: The objective of the study was to evaluate IDO1 expression in thyroid carcinoma and demonstrate its immunosuppressive function in the context of thyroid tumors. SETTING: IDO1 expression was evaluated by quantitative PCR in 105 papillary thyroid carcinomas (PTCs), 11 medullary thyroid carcinomas, six anaplastic thyroid carcinomas, and five thyroid carcinoma cell lines (TCCLs), by immunohistochemistry in 55 PTCs and by Western blotting in five TCCLs. FoxP3+ Treg lymphocyte density was evaluated by immunohistochemistry in 29 PTCs. IDO1 inhibitory effect on lymphocyte proliferation was tested in coculture experiments of TCCLs and activated lymphocytes. RESULTS: IDO1 mRNA expression resulted significantly higher in all the analyzed thyroid carcinoma histotypes compared with normal thyroid. Interestingly, an increase of IDO1 mRNA expression magnitude could be observed with gain of aggressiveness (PTCs and medullary thyroid carcinomas â‰Ș anaplastic thyroid carcinomas). In PTCs, IDO1 mRNA expression magnitude correlated with IDO1 immunostaining intensity in cancer cells and with FoxP3+ Treg lymphocyte density in the tumor microenvironment. IDO1 was expressed in human thyroid cancer cell lines in vitro, and FTC-133 cells showed high kynurenine concentration in the conditioned medium and a strong suppressive action on the proliferation of activated lymphocytes in coculture experiments. CONCLUSIONS: For the first time, this study demonstrates a pivotal role of IDO1 in the suppression of lymphocyte function in thyroid carcinoma microenvironment
    corecore