495 research outputs found
Identification of hip fracture patients from radiographs using Fourier analysis of the trabecular structure: a cross-sectional study
Peer reviewedPublisher PD
Biallelic mutations in IRF8 impair human NK cell maturation and function
Human NK cell deficiencies are rare yet result in severe and often fatal disease, particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells, and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8, which encodes an interferon regulatory factor, as a cause of familial NK cell deficiency that results in fatal and severe viral disease. Compound heterozygous or homozygous mutations in IRF8 in 3 unrelated families resulted in a paucity of mature CD56dim NK cells and an increase in the frequency of the immature CD56bright NK cells, and this impairment in terminal maturation was also observed in Irf8–/–, but not Irf8+/–, mice. We then determined that impaired maturation was NK cell intrinsic, and gene expression analysis of human NK cell developmental subsets showed that multiple genes were dysregulated by IRF8 mutation. The phenotype was accompanied by deficient NK cell function and was stable over time. Together, these data indicate that human NK cells require IRF8 for development and functional maturation and that dysregulation of this function results in severe human disease, thereby emphasizing a critical role for NK cells in human antiviral defense
Dual role of B7 costimulation in obesity-related nonalcoholic steatohepatitis and metabolic dysregulation
The low-grade inflammatory state present in obesity contributes to obesity-related metabolic dysregulation, including nonalcoholic steatohepatitis (NASH) and insulin resistance. Intercellular interactions between immune cells or between immune cells and hepatic parenchymal cells contribute to the exacerbation of liver inflammation and steatosis in obesity. The costimulatory molecules, B7.1 and B7.2, are important regulators of cell-cell interactions in several immune processes; however, the role of B7 costimulation in obesity-related liver inflammation is unknown. Here, diet-induced obesity (DIO) studies in mice with genetic inactivation of both B7.1 and B7.2 (double knockout; DKO) revealed aggravated obesity-related metabolic dysregulation, reduced insulin signalling in the liver and adipose tissue (AT), glucose intolerance, and enhanced progression to steatohepatitis resulting from B7.1/B7.2 double deficiency. The metabolic phenotype of B7.1/B7.2 double deficiency upon DIO was accompanied by increased hepatic and AT inflammation, associated with largely reduced numbers of regulatory T cells (Tregs) in these organs. In order to assess the role of B7 costimulation in DIO in a non-Treg-lacking environment, we performed antibody (Ab)-mediated inhibition of B7 molecules in wild-type mice in DIO. Antibody-blockade of both B7.1 and B7.2 improved the metabolic phenotype of DIO mice, which was linked to amelioration of hepatic steatosis and reduced inflammation in liver and AT. Conclusion: Our study demonstrates a dual role of B7 costimulation in the course of obesity-related sequelae, particularly NASH. The genetic inactivation of B7.1/B7.2 deteriorates obesity-related liver steatosis and metabolic dysregulation, likely a result of the intrinsic absence of Tregs in these mice, rendering DKO mice a novel murine model of NASH. In contrast, inhibition of B7 costimulation under conditions where Tregs are present may provide a novel therapeutic approach for obesity-related metabolic dysregulation and, especially, NAS
Early changes within the lymphocyte population are associated with the development of multiple organ dysfunction syndrome in trauma patients
2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.JM was funded, in part, by the Royal College of Surgeons of England, The Phillip King Charitable Trust Research Fellowship and The National Institute of Health Research (NIHR)
National and firm-level drivers of the devolution of HRM decision making to line managers
Multinational companies must understand the influences on responsibility for managing people so that they can manage talent consistently thus ensuring that it is transferable across locations. We examine the impact of firm and national level characteristics on the devolution of HRM decision making to line managers. Our analysis draws on data from 2335 indigenous organizations in 21 countries. At the firm level, we found that where the HR function has higher power, devolution is less likely. At the national level, devolution of decision making to line management is more likely in societies with more stringent employment laws and lower power distance
Recommended from our members
Preclinical Evaluation of Off-The-Shelf PD-L1+ Human Natural Killer Cells Secreting IL15 to Treat Non-Small Cell Lung Cancer.
We described previously a human natural killer (NK) cell population that upregulates PD-L1 expression upon recognizing and reacting to tumor cells or exposure to a combination of IL12, IL18, and IL15. Here, to investigate the safety and efficacy of tumor-reactive and cytokine-activated (TRACK) NK cells, human NK cells from umbilical cord blood were expanded, transduced with a retroviral vector encoding soluble (s) IL15, and further cytokine activated to induce PD-L1 expression. Our results show cryopreserved and thawed sIL15_TRACK NK cells had significantly improved cytotoxicity against non-small cell lung cancer (NSCLC) in vitro when compared with non-transduced (NT) NK cells, PD-L1+ NK cells lacking sIL15 expression (NT_TRACK NK), or NK cells expressing sIL15 without further cytokine activation (sIL15 NK cells). Intravenous injection of sIL15_TRACK NK cells into immunodeficient mice with NSCLC significantly slowed tumor growth and improved survival when compared with NT NK and sIL15 NK cells. The addition of the anti-PD-L1 atezolizumab further improved control of NSCLC growth by sIL15_TRACK NK cells in vivo. Moreover, a dose-dependent efficacy was assessed for sIL15_TRACK NK cells without observed toxicity. These experiments indicate that the administration of frozen, off-the-shelf allogeneic sIL15_TRACK NK cells is safe in preclinical models of human NSCLC and has potent antitumor activity without and with the administration of atezolizumab. A phase I clinical trial modeled after this preclinical study using sIL15_TRACK NK cells alone or with atezolizumab for relapsed or refractory NSCLC is currently underway (NCT05334329)
Alternating hemiplegia of childhood: evolution over time and mouse model corroboration
Alternating hemiplegia of childhood is a rare neurodevelopmental disorder caused by ATP1A3 mutations. Some evidence for disease progression exists, but there are few systematic analyses. Here, we evaluate alternating hemiplegia of childhood progression in humans and in the D801N knock-in alternating hemiplegia of childhood mouse, Mashlool, model. This study performed an ambidirectional (prospective and retrospective data) analysis of an alternating hemiplegia of childhood patient cohort (n = 42, age 10.24 ± 1.48 years) seen at one US centre. To investigate potential disease progression, we used linear mixed effects models incorporating early and subsequent visits, and Wilcoxon Signed Rank test comparing first and last visits. Potential early-life clinical predictors were determined via multivariable regression. We also compared EEG background at first encounter and at last follow-up. We then performed a retrospective confirmation study on a multicentre cohort of alternating hemiplegia of childhood patients from France (n = 52). To investigate disease progression in the Mashlool mouse, we performed behavioural testing on a cohort of Mashlool- mice at prepubescent and adult ages (n = 11). Results: US patients, over time, demonstrated mild worsening of non-paroxysmal disability index scores, but not of paroxysmal disability index scores. Increasing age was a predictor of worse scores: P < 0.0001 for the non-paroxysmal disability index, intellectual disability scale and gross motor scores. Earliest non-paroxysmal disability index score was a predictor of last visit non-paroxysmal disability index score (P = 0.022), and earliest intellectual disability score was a predictor of last intellectual disability score (P = 0.035). More patients with EEG background slowing were noted at last follow-up as compared to initial (P = 0.015). Similar worsening of disease with age was also noted in the French cohort: age was a significant predictor of non-paroxysmal disability index score (P = 0.001) and first and last non-paroxysmal disability index score scores significantly differed (P = 0.002). In animal studies, adult Mashlool mice had, as compared to younger Mashlool mice, (i) worse balance beam performance; (ii) wider base of support; (iii) higher severity of seizures and resultant mortality; and (iv) no increased predisposition to hemiplegic or dystonic spells. In conclusion, (i) non-paroxysmal alternating hemiplegia of childhood manifestations show, on average over time, progression associated with severity of early-life non-paroxysmal disability and age. (ii) Progression also occurs in Mashlool mice, confirming that ATP1A3 disease can lead to age-related worsening. (iii) Clinical findings provide a basis for counselling patients and for designing therapeutic trials. Animal findings confirm a mouse model for investigation of underlying mechanisms of disease progression, and are also consistent with known mechanisms of ATP1A3-related neurodegeneration
Changes in Cytokine Levels and NK Cell Activation Associated with Influenza
Several studies have highlighted the important role played by murine natural killer (NK) cells in the control of influenza infection. However, human NK cell responses in acute influenza infection, including infection with the 2009 pandemic H1N1 influenza virus, are poorly documented. Here, we examined changes in NK cell phenotype and function and plasma cytokine levels associated with influenza infection and vaccination. We show that absolute numbers of peripheral blood NK cells, and particularly those of CD56bright NK cells, decreased upon acute influenza infection while this NK cell subset expanded following intramuscular influenza vaccination. NK cells exposed to influenza antigens were activated, with higher proportions of NK cells expressing CD69 in study subjects infected with seasonal influenza strains. Vaccination led to increased levels of CD25+ NK cells, and notably CD56bright CD25+ NK cells, whereas decreased amounts of this subset were present in the peripheral blood of influenza infected individuals, and predominantly in study subjects infected with the 2009 pandemic H1N1 influenza virus. Finally, acute influenza infection was associated with low plasma concentrations of inflammatory cytokines, including IFN-γ, MIP-1β, IL-2 and IL-15, and high levels of the anti-inflammatory cytokines IL-10 and IL-1ra. Altogether, these data suggest a role for the CD56bright NK cell subset in the response to influenza, potentially involving their recruitment to infected tissues and a local production and/or uptake of inflammatory cytokines
Tumor Growth Decreases NK and B Cells as well as Common Lymphoid Progenitor
Background: It is well established that chronic tumor growth results in functional inactivation of T cells and NK cells. It is less clear, however, whether lymphopoeisis is affected by tumor growth. Principal Findings: In our efforts of analyzing the impact of tumor growth on NK cell development, we observed a major reduction of NK cell numbers in mice bearing multiple lineages of tumor cells. The decrease in NK cell numbers was not due to increased apoptosis or decreased proliferation in the NK compartment. In addition, transgenic expression of IL-15 also failed to rescue the defective production of NK cells. Our systematic characterization of lymphopoeisis in tumor-bearing mice indicated that the number of the common lymphoid progenitor was significantly reduced in tumor-bearing mice. The number of B cells also decreased substantially in tumor bearing mice. Conclusions and Significance: Our data reveal a novel mechanism for tumor evasion of host immunity and suggest a new interpretation for the altered myeloid and lymphoid ratio in tumor bearing hosts
IL-35 Is a Novel Responsive Anti-inflammatory Cytokine — A New System of Categorizing Anti-inflammatory Cytokines
It remains unknown whether newly identified anti-inflammatory/immunosuppressive cytokine interleukin-35 (IL-35) is different from other anti-inflammatory cytokines such as IL-10 and transforming growth factor (TGF)-β in terms of inhibition of inflammation initiation and suppression of full-blown inflammation. Using experimental database mining and statistical analysis methods we developed, we examined the tissue expression profiles and regulatory mechanisms of IL-35 in comparison to other anti-inflammatory cytokines. Our results suggest that in contrast to TGF-β, IL-35 is not constitutively expressed in human tissues but it is inducible in response to inflammatory stimuli. We also provide structural evidence that AU-rich element (ARE) binding proteins and microRNAs target IL-35 subunit transcripts, by which IL-35 may achieve non-constitutive expression status. Furthermore, we propose a new system to categorize anti-inflammatory cytokines into two groups: (1) the house-keeping cytokines, such as TGF-β, inhibit the initiation of inflammation whereas (2) the responsive cytokines including IL-35 suppress inflammation in full-blown stage. Our in-depth analyses of molecular events that regulate the production of IL-35 as well as the new categorization system of anti-inflammatory cytokines are important for the design of new strategies of immune therapies
- …
