29 research outputs found

    The KMOS Cluster Survey (KCS). I. The Fundamental Plane and the Formation Ages of Cluster Galaxies at Redshift 1.4 < Z < 1.6

    Get PDF
    We present the analysis of the fundamental plane (FP) for a sample of 19 massive red-sequence galaxies (M⋆>4×1010{M}_{\star }\gt 4\times {10}^{10} M⊙{M}_{\odot }) in three known overdensities at 1.39<z<1.611.39\lt z\lt 1.61 from the K-band Multi-object Spectrograph (KMOS) Cluster Survey, a guaranteed-time program with spectroscopy from the KMOS at the VLT and imaging from the Hubble Space Telescope. As expected, we find that the FP zero-point in B band evolves with redshift, from the value 0.443 of Coma to −0.10 ± 0.09, −0.19 ± 0.05, and −0.29 ± 0.12 for our clusters at z = 1.39, z = 1.46, and z = 1.61, respectively. For the most massive galaxies (logM⋆/M⊙>11\mathrm{log}{M}_{\star }/{M}_{\odot }\gt 11) in our sample, we translate the FP zero-point evolution into a mass-to-light-ratio M/L evolution, finding ΔlogM/LB=(−0.46±0.10)z{\rm{\Delta }}\mathrm{log}M/{L}_{B}=(-0.46\pm 0.10)z, ΔlogM/LB=(−0.52±0.07)z{\rm{\Delta }}\mathrm{log}M/{L}_{B}=(-0.52\pm 0.07)z, to ΔlogM/LB=(−0.55±0.10)z{\rm{\Delta }}\mathrm{log}M/{L}_{B}=(-0.55\pm 0.10)z, respectively. We assess the potential contribution of the galaxy structural and stellar velocity dispersion evolution to the evolution of the FP zero-point and find it to be ~6%–35% of the FP zero-point evolution. The rate of M/L evolution is consistent with galaxies evolving passively. Using single stellar population models, we find an average age of 2.33−0.51+0.86{2.33}_{-0.51}^{+0.86} Gyr for the logM⋆/M⊙>11\mathrm{log}{M}_{\star }/{M}_{\odot }\gt 11 galaxies in our massive and virialized cluster at z = 1.39, 1.59−0.62+1.40{1.59}_{-0.62}^{+1.40} Gyr in a massive but not virialized cluster at z = 1.46, and 1.20−0.47+1.03{1.20}_{-0.47}^{+1.03} Gyr in a protocluster at z = 1.61. After accounting for the difference in the age of the universe between redshifts, the ages of the galaxies in the three overdensities are consistent within the errors, with possibly a weak suggestion that galaxies in the most evolved structure are older

    Reproductive biology of Sclerodermus brevicornis, a European parasitoid developing on three species of invasive longhorn beetles

    Get PDF
    The reproductive performance of Sclerodermus brevicornis (Kieffer), a bethylid wasp native to Europe, was evaluated on three species of facticious hosts. These are longhorn beetles which have recently invaded Europe from Asia: Anoplophora glabripennis (Motschulsky), Anoplophora chinensis (Forster) and Psacothea hilaris hilaris (Pascoe) (Coleoptera: Cerambycidae). Sclerodermus brevicornis attacked all three species, but offspring only developed to maturity on medium and large sized host larvae. Host species influenced the duration of parasitoid development and the number of offspring maturing, both were greatest on A. glabripennis, with up to 373 adult parasitoids emerging from a single host. The sex ratios of S. brevicornis broods were strongly female biased (ca. 9% males). We conclude that S. brevicornis has the potential to be efficiently mass-reared and actively deployed in the biological control of invasive longhorn beetles. Further progress should be encouraged by the successful use of other species of Sclerodermus against beetle pests in China

    Segment-scale volcanic episodicity : evidence from the North Kolbeinsey Ridge, Atlantic

    Get PDF
    The upper oceanic crust is produced by magmatism at mid-ocean ridges, a process thought to be characterized by cyclic bouts of intense magmatic activity, separated by periods when faulting accommodates most or even all of the plate motion. It is not known whether there is a distinct periodicity to such magmatic–tectonic cycles. Here we present high-resolution sidescan sonar data from the neovolcanic zone of the North Kolbeinsey Ridge, a shallow slow-spreading ridge where high glacial and steady post-glacial sedimentation rates allow relative flow ages to be determined with a resolution of around 2 kyr using backscatter amplitude as a proxy for sediment thickness and hence age. We identify 18 lava flow fields covering 40% of the area surveyed. A group of 7 flow fields showing the highest (and similar) backscatter intensity are scattered along 75 km of axial valley surveyed, suggesting that at least this length of the segment was magmatically active within a 1.2 kyr time window. Based on conservative age estimates for all datable flows and estimated eruption volumes, the post-glacial volcanic activity imaged is insufficient to maintain crustal thickness, implying that episode(s) of enhanced activity must have preceded the volcanism we image
    corecore