342 research outputs found

    A fracture-controlled path-following technique for phase-field modeling of brittle fracture

    Get PDF
    In the phase-field description of brittle fracture, the fracture-surface area can be expressed as a functional of the phase field (or damage field). In this work we study the applicability of this explicit expression as a (non-linear) path-following constraint to robustly track the equilibrium path in quasi-static fracture propagation simulations, which can include snap-back phenomena. Moreover, we derive a fracture-controlled staggered solution procedure by systematic decoupling of the path-following controlled elasticity and phase-field problems. The fracture-controlled monolithic and staggered solution procedures are studied for a series of numerical test cases. The numerical results demonstrate the robustness of the new approach, and provide insight in the advantages and disadvantages of the monolithic and staggered procedures

    Strategies for pigeonpea improvement

    Get PDF
    In order to feed an ever-increasing population, it is essential to deal yield reducing factors. Climate smart crop varieties that yield more with fewer inputs will be required to achieve the success. In this scenario pigeonpea plays an important role as it can stand in relatively harsh environmental conditions. Hybrid breeding along with the pure line breeding, genetic resources and genomics advances are enriching this crop. However, the pigeonpea improvement program must be re-oriented in order to deal with the yield-reducing factors and to break the yield plateau

    Recent Advances in Pigeonpea [Cajanus cajan (l.) Millspaugh) Research

    Get PDF
    Pigeonpea or red gram [Cajanus cajan (L.) Millspaugh] is an important food legume of the semi-arid tropics of Asia and Africa. It occupies a prime niche in sustainable farming systems of smallholder rainfed farmers. It occupies a prominent place in Indian rainfed agriculture. It is an integral component in various agro ecologies of the country mainly inter cropped with cereals, pulses, oilseeds and millets. It is the second most important pulse crop next to chickpea, covering an area of around 4.42 m ha (occupying about 14.5% of area under pulses) and production of 2.86 MT (contributing to 16% of total pulse production) and productivity of about 707 kg/ha. It is mainly consumed as dry split dhal throughout the country besides several other uses of various parts of pigeonpea plant. Enhancing the productivity of the crop assumes specific significance in India mainly to combat protein malnutrition as it is the main source of protein to the predominant vegetarian population. The productivity of pigeonpea has remained low and stagnant over the last few decades thus this prompted scientists to search for novel ways of crop improvement. To tackle this challenge, ICRISAT and IIPR are working on number of innovative ideas like, genome sequencing (Varshney et al. 2012), development of CGMS hybrids with 30 to 40 % yield advantage over traditional varieties, development of photo insensitive super early maturing lines, introgression of cleistogamous flower structure to maintain genetic purity of elite lines, use of obcordate leaf shape as NEP to assess genetic purity of hybrid parental lines and development of disease resistant hybrids and elite breeding lines. These aspects are described briefly below

    Pigeonpea perspective in India

    Get PDF
    Pigeonpea occupies a prominent place in Indian rainfed agriculture. It is an integral component of in various agro ecologies of the country mainly inter cropped with cereals, pulses and oilseeds and millets. It is the second most important pulse crop next to chickpea, covering an area of around 4.42 m ha (occupying about 14.5% of area under pulses) and production of 2.86 MT (contributing to 16% of total pulse production) and productivity of about 707 kg/ha. It is mainly consumed as dry split dhal throughout the country besides several other uses of various parts of pigeonpea plant. Enhancing the productivity of the crop assumes specific significance in India mainly to combat protein malnutrition as it is the main source of protein to the predominant vegetarian population. Based on the crop duration and climatic condition the crop is grouped under four agro ecological zones with varied plant type requirements and location specific constraints for each zone. Systematic crop improvement efforts were launched at ICRSIAT since its inception in 1972. It focused during first decade (1972 to 1980) on collection, evaluation, maintenance and sharing of germplasm and yield enhancement research. During 1980 to 2000 ICRISAT research priorities were development of stable sources of resistance for wilt and Sterility Mosaic Diseases which are highly devastating and endemic in India in almost all the agro ecologies of pigeonpea cultivation. From 2000, concerted efforts are in progress on CGMS based hybrid development. Spectacular achievement by ICRISAT in recent past in the crop is deciphering its genome sequence and it has ushered pigeonpea in to genomic era. Subsequently lot of genomic information is in the process of development through molecular approaches like Genome Wide Association Studies (GWAS), Nested Association Mapping (NAM). Multiparent Advance Generation Inter Crosses (MAGIC) and Introgression Libraries (IL) etc. These approaches are under process of utilization for crop improvement

    Time-Dependent Warping, Fluxes, and NCYM

    Get PDF
    We describe the supergravity solutions dual to D6-branes with both time-dependent and time-independent B-fields. These backgrounds generalize the Taub-NUT metric in two key ways: they have asymmetric warp factors and background fluxes. In the time-dependent case, the warping takes a novel form. Kaluza-Klein reduction in these backgrounds is unusual, and we explore some of the new features. In particular, we describe how a localized gauge-field emerges with an analogue of the open string metric and coupling. We also describe a gravitational analogue of the Seiberg-Witten map. This provides a framework in supergravity both for studying non-commutative gauge theories, and for constructing novel warped backgrounds.Comment: 32 pages, LaTeX, references adde

    Pigeonpea - A unique jewel in rainfed cropping systems

    Get PDF
    Pigeonpea is a crop for rainfed environments endowed with several features to thrive harsh climate. It adapts well in sole crop and inter cropped conditions (with cereals, millets, oils seeds and pulses) by enhancing the system productivity and net income to the small and marginal farmers across the globe. The range of maturity duration in the crop allows it to grow in diversified cropping systems and patterns in varied ecoregions of the world. Development of cytoplasmic male sterility based hybrids provided an opportunity for enhancing the yields under marginal environments. With recent interventions in addressing the photo sensitivity and maturity have led to evolving super early varieties with less than 100 days duration, provided a scope for horizontal expansion of the crop in different agro ecological systems

    Collective excitations of a two-dimensional interacting Bose gas in anti-trap and linear external potentials

    Full text link
    We present a method of finding approximate analytical solutions for the spectra and eigenvectors of collective modes in a two-dimensional system of interacting bosons subjected to a linear external potential or the potential of a special form u(x,y)=Ό−ucosh⁥2x/lu(x,y)=\mu -u \cosh^2 x/l, where ÎŒ\mu is the chemical potential. The eigenvalue problem is solved analytically for an artificial model allowing the unbounded density of the particles. The spectra of collective modes are calculated numerically for the stripe, the rare density valley and the edge geometry and compared with the analytical results. It is shown that the energies of the modes localized at the rare density region and at the edge are well approximated by the analytical expressions. We discuss Bose-Einstein condensation (BEC) in the systems under investigations at T≠0T\ne 0 and find that in case of a finite number of the particles the regime of BEC can be realized, whereas the condensate disappears in the thermodynamic limit.Comment: 10 pages, 2 figures include

    Utilizing image texture to detect land-cover change in Mediterranean coastal wetlands

    Get PDF
    Land-use/cover change dynamics were investigated in a Mediterranean coastal wetland. Change Vector Analysis (CVA) without and with image texture derived from the co-occurrence matrix and variogram were evaluated for detecting land-use/cover change. Three Landsat Thematic Mapper (TM) scenes recorded on July 1985, 1993 and 2005 were used, minimizing change detection error caused by seasonal differences. Images were geometrically, atmospherically and radiometrically corrected. CVA without and with texture measures were implemented and assessed using reference images generated by object-based supervised classification. These outputs were used for cross-classification to determine the ‘from–to’ change used to compare between techniques. The Landsat TM image bands together with the variogram yielded the most accurate change detection results, with Kappa statistics of 0.7619 and 0.7637 for the 1985–1993 and 1993–2005 image pairs, respectively

    Microalgae biorefinery alternatives and hazard evaluation

    Get PDF
    Biodiesel production based on microalgae and using carbon dioxide as feedstock constitutes an attractive biofuel alternative. Technology development and process optimization are necessary to minimize the overall production cost. Moreover, in the framework of process sustainability, social and environmental impacts should include process safety aspects. In this context, the objective of this work is to develop a biodiesel production process based on microalgae and the subsequent estimation of the associated risks, thus contributing to more sustainable and safe processes. The biodiesel biorefinery is optimized, taking into account alternative configurations for algae cultivation and lipid extraction. Algae cultivation options are open ponds and tubular photobioreactors. Regarding lipid extraction, dewatering and subsequent n-hexane extraction, and combined ethanol/n-hexane extraction are the studied alternatives. Numerical results showed that open ponds and n-hexane extraction provide maximum net present value. However, n-hexane consumption dramatically rises, and industrial hazards have not been considered in the optimization process. To overcome this issue, a preliminary hazard analysis is carried out to identify hazardous materials and operations. Event trees are formulated to derive the frequencies of different accident scenarios, further determining the consequences. The major consequences of accidents involve toxic releases of high quantities of n-hexane. By comparing the proposed alternatives, this work aims to highlight the need to consider not only economic but also safety and environmental objectives in the development of a biodiesel production project.The authors are grateful for the financial support provided by CONICET and the Spanish MICINN under projects CTQ2013-48280-C3-1-R and CTM2014-57833-R. J. Pinedo would also like to thank the financial support provided by “Becas IberoamĂ©rica JPI España 2014”

    Supersymmetrization of Quaternion Dirac Equation for Generalized Fields of Dyons

    Full text link
    The quaternion Dirac equation in presence of generalized electromagnetic field has been discussed in terms of two gauge potentials of dyons. Accordingly, the supersymmetry has been established consistently and thereafter the one, two and component Dirac Spinors of generalized quaternion Dirac equation of dyons for various energy and spin values are obtained for different cases in order to understand the duality invariance between the electric and magnetic constituents of dyons.Comment: Key words: Supersymmetry, quaternion, Dirac equation, dyons PACS No.: 11.30.Pb, 14.80.Ly, 03.65.G
    • 

    corecore