14 research outputs found

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4

    Low‐temperature tolerance in coprophagic beetle species (Coleoptera: Scarabaeidae): implications for ecological services

    No full text
    1. Low temperatures affect insect functioning and population dynamics. Although temperate species cope with low temperatures better than their tropical counterparts, increasing temperature variability due to climate change exposes tropical species to frequent cold stress. For keystone insect species providing important ecosystem services, low-temperature tolerances, and behavioural responses remain unknown, hampering predictions under climate change. 2. The present study examined low-temperature physiology [critical thermal minima (CTmin) and chill coma recovery time (CCRT)] of six dung beetle species across three activity times: diurnal Allogymnopleurus indigaceous (Reiche) and Euoniticellus intermedius (Reiche); crepuscular Onthophagus alexis (Klug) and Onthophagus gazella (Fabricius), and; nocturnal Copris elephenor (Klug) and Scarabaeus zambezianus (Peringuey). Further, ecological service delivery (dung removal) was examined between diurnal and nocturnal species across the temperature regimes. 3. Nocturnal species had significantly greater cold tolerance than both crepuscular and diurnal species, while CCRT was significantly shortest in diurnal than both crepuscular and nocturnal species. Dung ball production between diurnal and nocturnal species interacted with temperature, with diurnal species producing significantly fewer balls at low temperatures, while nocturnal beetles were not significantly affected. In turn, nocturnal species produced significantly larger balls than the diurnal species across temperatures. Effects of temperature regime shifts were intertwined with the foraging ecology of individual species. 4. Future research should quantify species' functional responses toward different amounts of dung masses as stressful temperatures increase. 5. Results are significant for determination of species thermal ranges and predicting costs of low-temperature stress through reduced ecological services under shifting thermal environments

    On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic

    Get PDF
    Petroleum hydrocarbon contaminated sites, associated with the contemporary and legacy effects of human activities, remain a serious environmental problem in the Antarctic and Arctic. The management of contaminated sites in these regions is often confounded by the logistical, environmental, legislative and financial challenges associated with operating in polar environments. In response to the need for efficient and safe methods for managing contaminated sites, several technologies have been adapted for on-site or in situ application in these regions. This article reviews six technologies which are currently being adapted or developed for the remediation of petroleum hydrocarbon contaminated sites in the Antarctic and Arctic. Bioremediation, landfarming, biopiles, phytoremediation, electrokinetic remediation and permeable reactive barriers are reviewed and discussed with respect to their advantages, limitations and potential for the long-term management of soil and groundwater contaminated with petroleum hydrocarbons in the Antarctic and Arctic. Although these technologies demonstrate potential for application in the Antarctic and Arctic, their effectiveness is dependent on site-specific factors including terrain, soil moisture and temperature, freeze–thaw processes and the indigenous microbial population. The importance of detailed site assessment prior to on-site or in situ implementation is emphasized, and it is argued that coupling of technologies represents one strategy for effective, long-term management of petroleum hydrocarbon contaminated sites in the Antarctic and Arctic
    corecore