9 research outputs found

    Innovative sea surface monitoring with GNSS-REflectometry aboard ISS: overview and recent results from GEROS-ISS

    Get PDF
    GEROS-ISS (GEROS hereafter) stands for GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station. It is a scientific experiment, proposed to the European Space Agency (ESA) in 2011 for installation aboard the ISS. The main focus of GEROS is the dedicated use of signals from the currently available Global Navigation Satellite Systems (GNSS) for remote sensing of the System Earth with focus to Climate Change characterisation. The GEROS mission idea and the current status are briefly reviewed.Peer ReviewedPostprint (author's final draft

    City branding as economic necessity

    Get PDF
    Kvalitetno brendiranje grada je preduvjet za njihovu prepoznatljivost, kvalitetno pozicioniranje i stvaranje dodatne vrijednosti. Praksa i mnogobrojni primjeri potvrđuju ispravnost ove teze. Brendiranje gradova je nužno kako bi se pojačala konkurentnost, ostvarila veća dobit i osigurao razvoj mjesta. No ne radi se samo o ekonomskim kategorijama jer se pod razvojem mjesta podrazumijevaju i pozitivna demografska kretanja, obogaćivanje kulturnih sadržaja kao i drugih činitelja koji podižu ukupnu kvalitetu života. Izazov je to i nužnost i za gradove u Hrvatskoj kako bi bili konkurentni u oštroj tržišnoj konkurenciji.Quality city branding is a precondition for their recognazibility, quality positionig and creating of added value. Practice and numerous examples confirm correction of this theses. City branding is necessary to enhance concurence, gain bigger profit and ensure place development. But this is not only about economic categories because under place development it is understandable alsto positive demographic movement, enrichment of cultural contens as well as other factors which raise total quality of life. This is as well a challenge as it is a necessity for cities in Croatia so they could be concurente in harsh economy concurence

    Seller’s optimal credit period and replenishment time in a supply chain with up-stream and down-stream trade credits

    Get PDF
    [[abstract]]In practice, a supplier often offers its retailers a permissible delay period M to settle their unpaid accounts. Likewise, a retailer in turn offers another trade credit period N to its customers. The benefits of trade credit are not only to attract new buyers who consider it a type of price reduction, but also to provide a competitive strategy other than introduce permanent price reductions. On the other hand, the policy of granting credit terms adds an additional cost to the seller as well as an additional dimension of default risk. In this paper, we first incorporate the fact that trade credit has a positive impact on demand but negative impacts on costs and default risks to establish an economic order quantity model for the seller in a supply chain with up-stream and down-stream trade credits. Then we derive the necessary and sufficient conditions to obtain the optimal replenishment time and credit period for the seller. Finally, we use some numerical examples to illustrate the theoretical results.[[incitationindex]]SCI[[booktype]]電子

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation

    Integrated supply chain of supplier and retailer for stochastic demand

    Get PDF
    10.3846/mma.2018.035Mathematical Modelling and Analysis234582-59

    Innovative sea surface monitoring with GNSS-REflectometry aboard ISS: overview and recent results from GEROS-ISS

    No full text
    GEROS-ISS (GEROS hereafter) stands for GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station. It is a scientific experiment, proposed to the European Space Agency (ESA) in 2011 for installation aboard the ISS. The main focus of GEROS is the dedicated use of signals from the currently available Global Navigation Satellite Systems (GNSS) for remote sensing of the System Earth with focus to Climate Change characterisation. The GEROS mission idea and the current status are briefly reviewed.Peer Reviewe
    corecore