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Abstract. This article deals with a two-stage supply chain comprising of the retailer
and the supplier in which demand of the end customers follows news-vendor type
demand. The setup costs, purchasing and procurement costs are dependent on lot
sizes. The mathematical models for continuous and discrete variables of the chain
are analyzed mathematically to maximize the expected average profits of individual
and the collaborating systems. As our study suggests that collaborating system is
always better than the decentralized system for known distribution cases, we also
optimize the joint profit of the retailer and the supplier for a distribution free case
which is implemented for unknown distribution. Finally, numerical examples of the
demand patterns are illustrated to justify the proposed model. The punctual research
directions from the proposed model are also provided in the conclusion section.
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1 Introduction
The game theory is an elegant method to optimize the inventory control and
management problems in a given economy among other applications in deci-
sion making problems. It is glowing premeditated by the researchers as well
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as practitioners of supply chain management. A supply chain is a network of
industries/firms that procures final products from raw materials and compo-
nents which are delivered to the consumers. In a decentralized supply chain
system, firms/industries are independent and self-interested entities who max-
imize their own profits independently. In this case, Stakellberg approach is
applied to characterize the supply chain. On the other hand, the centralized
supply chain is controlled by a central planner consisting of all members of the
chain who is skilled in controlling all decisions. In this coordinating system,
total profit of the chain is shared by the players of the chain according to their
contributions/investments in the business. Munson and Rosenblatt [13] recom-
mend coordination using quantity discounts on both ends of supply chain of
supplier-manufacturer and retailer to dwindle costs compared to concentration
on lower end only. Park and Keh [17] study game theoretic analysis of price and
profit distribution in hybrid channel system. Yao at al. [32] locate the optimal
order quantity of the retailer and buy-back price of the manufacturer in direct
channel. Wee and Yang [31] propose an optimal heuristic solution of a dis-
tribution network of the single-producer, multi-distributors and multi-retailers
inventory system. Jaber et al. [8] develop the model of Munson and Rosen-
blatt [13] in view of discount dependent demand and profit sharing mechanism
among the members of the chain. Lo et al. [11] present the multiple deliver-
ies system in an integrated production-inventory model of single manufacturer
and single retailer assuming variable deterioration rate, partial backordering
and inflation in an imperfect production processes.Chung and Wee [6] study a
collaborative production-inventory model with partial backordering and infla-
tion in an imperfect manufacturing system of single manufacturer and single
retailer for Weibull deteriorating items. In their model, they mention that sell-
ing price strategies, warranty policy of free replacement, inspection policy and
stock display of the products play an important role to attract the customers
more. Van der Veen et al. [29] investigate a multi-echelon supply chain among
the downstream and upstream entities applying new type of revenue sharing
contract mechanism. Taleizadeh et al. [27] minimize the expected total cost
of an EPQ (Economic Production Quantity) model considering random defec-
tive rate of production with limited production and service level capacity and
failure of the repair of defective items. Cai [1] focuses on the impact of chan-
nel structures and channel coordination on the supplier, retailer and the entire
supply chain in two single channel and two dual-channel systems. Sarkar [21]
develops a production-inventory model in a two-echelon supply chain system
for probabilistic deteriorating products. Sarkar and Majumder [23] explore an
integrated vendor-buyer model based on probability distribution of lead time
demand. They analyze their model for normal distribution and distribution
free cases. Cardenas-Barron et al. [4] propose a heuristic algorithm for a multi-
product EPQ model of the integrated system of vendor and buyer with JIT
(just-in-time) philosophy and budget constraint. Taleizadeh et al. [26] maxi-
mize total profit of two-stage supply chain comprising of one vendor and several
non-competing retailers where the effect of deterioration on raw materials and
finished products are considered. They observe optimal retail prices, replenish-
ment frequency of raw materials, replenishment cycle of the product and pro-
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duction rate in order to achieve maximum profit of the chain. Khanra et al. [10]
compare between the cases of inventory followed by shortages and shortages
followed by inventory models for variable demand rate of the end customers.
Tayyab and Sarkar [28] present a manufacturing EPQ model of imperfect multi-
stage production system considering an uncertain defective rate in a cleaner
multi-stage lean production system. Khan et al. [9] analyze the joint cost of
two echelon (vendor-buyer for single product) supply chain in the light of vari-
able lead time, learning in production and screening errors of nonconforming
quality products. Panda et al. [16] investigate the channel coordination using
by backward and forward hybrid contract-bargaining processes in order to find
out the optimal benefit sharing among the manufacturer, multiple distributors
and multiple retailers’ supply chain. Several authors have studied two-layer
supply chain models assuming different features in their models. Among them,
the research works of Garcia-Laguna et al. [3], Shah and Shukla [25], Shah et
al. [24], Cardenas-Barron et al. [2,3], Sana [20], Panda [14,15], Chung et al. [7],
Sarkar [22] should be mentioned.

The news-vendor problem is one of the classical inventory model for uncer-
tain demand of the customers. In this structure, overstock and under-stock are
balanced so that the expected average cost is minimized. It has wide range of
implications to control and manage inventory in organizations/enterprises like
as food industries, fashion goods industries in a particular season, airline, hos-
pitality, among others. Petruzzi and Dada [18] study a comprehensive review
of newsboy problem where random demand is partly dependent on varying sell-
ing price. Chen and Chuang [5] develop the newsboy problem incorporating
shortage-level constraint. Wang [30] makes some remarks on the optimal order
quantity and reorder point for uncertainties of supply and demand. Sana [19]
analyzes a stochastic EOQ (economic order quantity) model over finite time
horizon where demand is random price sensitive. Ma et al. [12] suggest the
optimal ordering policies of a loss-averse news-vendor with supply and demand
uncertainties.

In this proposed article, we consider a three-node supply chain consisting
of one supplier, a retailer and end customers. The demand of end customers is
assumed to be random variable (news-vendor type) with a probability density
function. At the beginning of a single period, the retailer is interested in
determining an optimal stock policy to satisfy the customer’s demand for a
single product. As the demand is uncertain, overstock and under-stock of
inventory are considered in the expected average profit of the retailer. The over
stock, i.e., unsold items, is buyback to the supplier at a salvage value which is
less than the purchasing price of the items. Besides it, setup cost, purchasing
cost and selling price are assumed to be linear decreasing functions of order
quantities respectively. As a result, the expected profit of the retailer is a
function of order quantity (Q) only. At the supplier, the demand of the retailer
is Q and no shortage is considered because the replenishment size (R) of the
supplier is instantaneously infinite, i.e., sufficient quantities are available at the
market. The unsold items at each stage (i.e., supplier and retailer) are buyback
to the predecessor members of the chain. The expected average profit of the
supplier includes setup cost, inventory holding cost, payment of unsold item and



Integrated Supply Chain of Supplier and Retailer 585

salvage value of unsold item. The purchasing cost of the supplier is a function
of replenishment size (R). Hence, it is a function of (R,Q). The continuous
and discrete distributions are compulsory for uncertain demand of the end
customers. In our model, decentralized and centralized supply chain between
supplier and retailer are compared for both the distribution and distribution
free cases.

Rest of the paper is organized as follows. The assumptions and notations
are provided in Section 2. Section 3 contains mathematical formulation and
analysis of the proposed model. Numerical analyses of continuous and discrete
cases are illustrated in Section 4. Section 5 concludes the contribution and
future research works of the paper.

2 Fundamental assumptions and notations

2.1 Assumptions

The following assumptions and notations are assumed to depict the proposed
model.

i) Single supplier and single retailer are the members of the chain.

ii) Shortage is allowed at the retailer and totally backlogged.

iii) Selling prices and cost prices at each stage are decreasing functions of the
lot sizes.

iv) Set up cost at the retailer is directly proportional to the lot size. It
includes packaging cost, price labeling cost, shelf cost, etc.

v) Set up cost of the supplier includes fixed cost and cost per unit for pack-
aging and price labeling.

vi) The unsold items at the retailer are buyback to the supplier at a salvage
price less than the purchasing price. Also, the returned items to the
supplier have salvage value at the supplier.

vii) Lead time and supply disruptions at each stage are neglected.

2.2 Notation

The following notations are used to develop the model: x – random demand of
the end customers, f(x) – probability density function of x with mean (µ) and
standard deviation (σ), Q – order quantity of the retailer, R – replenishment
size of the supplier, p(x) – selling price per unit item of the retailer, w(Q) –
selling price per unit item of the supplier, C(R) – purchasing/procurement cost
per unit item of the supplier, ar – set up cost per unit item at the retailer, Cs
– shortage cost per unit item, a1 – fixed set up cost per cycle of the supplier,
a2 – set up cost per unit at the supplier, br(< w(Q)) – salvage value per unsold
item at the retailer, bs(< br) – salvage value per unsold item at the supplier,
πR – expected average profit of the retailer, πS – expected average profit of the
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supplier, πC – expected average profit of the joint/collaborative system, qi –
number of items for discrete demand of the end customers, fi – probability of
occurrence of qi∀i ∈ (1, 2, 3, . . .), qj – order quantity of the retailer, k – varying
scale parameter such that R = kj.

3 The model

The demand of end customers is random variable x that follows the probability
density function f(x) such that

∫ +∞
−∞ f(x)dx = 1. As demand of the end

customers is uncertain in nature, the overstock and understock may occur.
The over stock at the retailer is buyback at salvage value b

r
per unit item.

The shortage at the retailer is fully backlogged and a penalty is charged for the
shortage. It includes profit another cost for loss of goodwill of the retailer. Let
Q is the lot size of the retailer and R is the replenishment size of the supplier.
Quite often, the selling price and purchasing costs decrease with lot sizes. In
this case, the selling prices are as follows:

p(x) = α1 − β1x,∀x < α1/β1, (3.1)

w(Q) = α2 − β2Q,∀Q < α2/β2, (3.2)

C(R) = α3 − β3R,∀R < α3/β3. (3.3)

Here, αi(i = 1, 2, 3) are prices per unit item at the retailer and supplier re-
spectively. The parameters βi(i = 1, 2, 3) are scale parameters. In this supply
chain, the following two cases may arise as demand of the end customers is
uncertain.

Case-I: When stock out situation does not occur, i.e., x ≤ Q. In this situ-
ation, the expected average profit of the retailer is πR is equal to the expected
selling price minus expected purchasing cost minus expected set up cost and
plus salvage value of unsold items

πR=

∫ Q

−∞
p(x)xf(x)dx−w(Q)

∫ Q

−∞
Qf(x)dx−ar

∫ Q

−∞
xf(x)dx+br

∫ Q

−∞
(Q− x)f(x)dx.

Similarly, the expected average profit of the supplier is

πS = [(w(Q)− C(R))Q− 1

2
hsR− a1Q−

a2Q

R
]

∫ Q

−∞
f(x)dx

− br
∫ Q

−∞
(Q− x)f(x)dx+ bs

∫ Q

−∞
(Q− x)f(x)dx.

Case-II: When shortage occurs, i.e., x ≥ Q. In this case, demand of the
end customers exceeds inventory. The expected profit of the retailer is

πR=

∫ ∞
Q

p(x)xf(x)dx−w(Q)

∫ ∞
Q

Qf(x)dx−ar
∫ ∞
Q

xf(x)dx−Cs
∫ ∞
Q

(x−Q)f(x)dx.

The expected profit of the supplier is

πS =

[
(w(Q)− C(R))Q− 1

2
hsR− a1Q−

a2Q

R

] ∫ ∞
Q

f(x)dx.
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Now, combining the Cases I and II, we have the total expected average profit
of the retailer and supplier as follows:

πR =

∫ ∞
−∞

p(x)xf(x)dx− w(Q)

∫ ∞
−∞

Qf(x)dx− ar
∫ ∞
−∞

xf(x)dx

+ br

∫ Q

−∞
(Q− x)f(x)dx− Cs

∫ ∞
Q

(x−Q)f(x)dx, (3.4)

πS=(w(Q)−C(R))Q−hsR
2
−a1Q−

a2Q

R
−(br−bs)

∫ Q

−∞
(Q−x)f(x)dx. (3.5)

Now, our objective is to analyze the decentralized and centralized supply chain
as follows:

3.1 Decentralized supply chain

In this system, the members of the chain are self interested. They maximize
their own profit independently. In such system, Stakelberg approach is applied
to solve the problems. In this approach, one member is decision maker and
other members of the chain are followers. Here, retailer is the decision maker
and supplier is the follower of the retailer. The retailer determines optimal lot
size Q to maximize expected profit πR(Q). Then supplier maximizes his/her
expected profit πS and finds out an optimal replenishment size R. Substituting
equation (3.1) and (3.2) in equation (3.4), we have

πR(Q) = {α1µ− β1(µ2 + σ2)− α2Q− brµ− arµ}

+ (β2Q+ br)Q− (Cs − br)
∫ ∞
Q

(x−Q)f(x)dx. (3.6)

Differentiating the above equation with respect to Q, we have as follows

dπR
dQ

= −α2 + br + 2β2Q+ (Cs − br)
∫ ∞
Q

f(x)dx,

d2πR
dQ2

= 2β2 − (Cs − br)f(Q) < 0

for Cs > br and f(Q) > 2β2

(Cs−br) . For maximum value of πR(Q), dπR
dQ = 0, i.e.,

2β2

(Cs−br)Q+
∫∞
Q
f(x)dx = α2−br

(Cs−br) must have a solution at Q = Q∗. Hence, we

have the following proposition.

Proposition 1. The profit function πR(Q) attains its maximum at Q∗ if
2β2

(Cs−br)Q
∗ +

∫ +∞
Q∗ f(x)dx = α2−br

(Cs−br) and f(Q∗) > 2β2

(Cs−br) hold simultaneously.

Now using equations (3.2) and (3.3) in equation (3.6), we have

πS(Q,R) = (α2 − β2Q− α3 + β3R− a1)Q− hsR/2− a2Q/R

− (br − bs)(Q− µ)− (br − bs)
∫ +∞

Q

(x−Q)f(x)dx.

Math. Model. Anal., 23(4):582–595, 2018.
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As supplier is the follower of the retailer, the expected average profit at Q = Q∗

is πS(Q∗, R) = (α2−β2Q∗−α3 +β3R−a1)Q∗− 1
2hsR−

a2Q
∗

R −(br− bs)(Q∗−
µ) − (br − bs)

∫ +∞
Q∗ (x − Q∗)f(x)dx. Then, the supplier will maximize his/her

profit at optimal value of R. Now, differentiating πS(Q∗, R) with respect to R,
we have

dπS(Q∗, R)

dR
= β3Q

∗ − 1

2
hs +

a2Q
∗

R2
,

d2πS(Q∗, R)

dR2
= −2a2Q

∗

R3
< 0, ∀R > 0.

For maximum value of πS(Q∗, R), dπS(Q
∗,R)

dR = 0 provides a feasible solution

R∗ =
√

2a2Q∗

hs−2β3Q∗ if hs > 2β3Q
∗ holds. Hence, the following proposition is

valid.

Proposition 2. The profit function πS(Q∗, R) attains its maximum value at

R∗ =
√

2a2Q∗

hs−2β3Q∗ if hs > 2β3Q
∗ holds.

3.2 Centralized supply chain system

In this chain, the supplier and retailer business jointly and their objective is to
maximize their joint profit. In this collaborating system, the joint profit is

πC(Q,R) = πR + πS = {α1µ− β1(µ2 + σ2)− bsµ− arµ}+
(
− α3 + β3R

− a1 + bs
)
Q− 1

2
hsR−

a2Q

R
− (Cs − bs)

∫ ∞
Q

(x−Q)f(x)dx. (3.7)

Differentiating πC(Q,R) with respect to Q and R, we get

∂πC
∂Q

= (−α3 + β3R− a1 + bs) + (Cs − bs)
∫ ∞
Q

f(x)dx,

∂πC
∂R

= β3Q−
1

2
hs +

a2Q

R2
,

∂2πC
∂Q∂R

=
∂2πC
∂R∂Q

= β3 +
a2
R2

,

∂2πC
∂Q2

= −(Cs − bs)f(Q) < 0 as Cs > bs,

∂2πC
∂R2

= −2a2Q

R3
< 0, ∀ R > 0.

Now, solving ∂πC
∂Q = 0 = ∂πC

∂R , we have the stationary point (Q∗, R∗) such that

R∗(Q∗)=

√
2a2Q∗

hs−2β3Q∗
& (−α3+β3R

∗(Q∗)−a1+bs)+(Cs−bs)
∫ ∞
Q∗
f(x)dx=0.

Therefore, πC(Q,R) has maximum value at (Q∗, R∗) if [(∂
2πC
∂Q2 )(∂

2πC
∂R2 )

−( ∂
2πC

∂Q∂R )2] > 0, i.e., 2a2Q
∗R∗(Cs − bs)f(Q∗) > (R∗2β3 + a2)2 holds. Hence,

we have the following proposition.
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Proposition 3. If (−α3 + β3R
∗(Q∗)− a1 + bs) + (Cs− bs)

∫∞
Q∗ f(x)dx = 0 has

solution Q∗ ∈ (0, hs2β3
) and 2a2Q

∗R∗(Cs−bs)f(Q∗) > (R∗2β3 +a2)2 holds, then

πC(Q,R) attains maximum at (Q∗, R∗).

3.3 Distribution free case

In this case, probability distribution of demand of the end customers is un-
known. Then, the above problem may be approximated to a function where
mean and standard deviation are used instead of probability density function
as it is not defined. Using the inequality∫ ∞

Q

(x−Q)f(x)dx = E(x−Q)+ ≤ 1

2
{
√
σ2 + (Q− µ)2 − (Q− µ)}

in equation (3.7), we have

πC(Q,R) ≥ {α1µ− β1(µ2 + σ2)− bsµ− arµ}+ (−α3 + β3R− a1 + bs)Q

− 1

2
hsR−

a2Q

R
− (Cs − bs)

1

2
{
√
σ2 + (Q− µ)2 − (Q− µ)} = Y (Q,R).

Now our aim is to maximize Y (Q,R). Differentiating partially with respect
to Q and R, we have

∂Y

∂Q
= (−α3 + β3R− a1 + bs) +

1

2
(Cs − bs){

Q− µ√
σ2 + (Q− µ)2

− 1},

∂Y

∂R
= β3Q−

1

2
hs +

a2Q

R2
,

∂Y

∂Q∂R
=

∂Y

∂R∂Q
= β3 +

a2
R2

,

∂2Y

∂Q2
= −1

2
(Cs − bs)[

σ2

(σ2 + (Q− µ)2)3/2
] < 0 as Cs > bs,

∂2Y

∂R2
= −2a2Q

R3
< 0, ∀ R > 0.

Now, solving ∂Y
∂Q = 0 = ∂Y

∂R , we have the stationary point (Q∗, R∗) such that

R∗(Q∗) =
√

2a2Q∗/(hs − 2β3Q∗) and

(−α3 + β3R
∗(Q∗)− a1 + bs) +

1

2
(Cs − bs)

{ Q∗ − µ√
σ2 + (Q∗ − µ)2

− 1
}

= 0.

Therefore, Y (Q,R) has maximum value at (Q∗, R∗) if [(∂
2Y
∂Q2 )(∂

2Y
∂R2 )−( ∂2Y

∂Q∂R )2] >

0, i.e., 2a2Q
∗R∗{ 12 (Cs−bs)( σ2

(σ2+(Q−µ)2)3/2 )} > (R∗2β3 +a2)2 holds. Hence, we

have the following proposition.

Proposition 4. If (−α3 + β3R
∗(Q∗)− a1 + bs) + 1

2 (CS − bs){ Q∗−µ√
σ2+(Q∗−µ)2

−

1} = 0 has solution Q∗ ∈ (0, hs2β3
) and 2a2Q

∗R∗{ 12 (Cs− bs)( σ2

(σ2+(Q−µ)2)3/2 )} >
(R∗2β3 + a2)2 holds, then πC(Q,R) attains maximum at (Q∗, R∗).

Math. Model. Anal., 23(4):582–595, 2018.
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3.4 Discrete distribution

Here, the demand of end customer is i (i = 1, 2, . . .) unit with probability fi
such that

∑∞
i=1 fi = 1 and

∑∞
i=1 ifi = µ. The order quantity of the retailer is

j (j = 1, 2, . . .) unit. Then, the expected profits of the retailer and supplier are

πjR =

∞∑
i=1

p(i)ifi + br

j∑
i=1

(j − i)fi − ar
∞∑
i=1

ifi − Cs
∞∑

i=j+1

(i− j)fi − w(j)j,

πRS = (w(j)− C(R))j − 1

2
hsR− a1j −

a2j

R
− (br − bs)

j∑
i=1

(j − i)fi.

In decentralized system, the retailer first optimizes his/her profit and finds
out optimal order size j. Then, the supplier optimizes his/her profit following
order size j and determines the replenishment size R. Now, πjR − π

j+1
R > 0

implies
∑j
i=1 fi−( 2β2

Cs−br )j > (Cs−α2+β2

Cs−br ) and πjR−π
j−1
R > 0 implies

∑j−1
i=1 fi−

( 2β2

Cs−br )(j − 1) < (Cs−α2+β2

Cs−br ). Therefore, q∗ = j is optimum lot size if πj−1R <

πjR > πj+1
R , i.e.,

j−1∑
i=1

fi − (
2β2

Cs − br
)(j − 1) < (

Cs − α2 + β2
Cs − br

) <

j∑
i=1

fi − (
2β2

Cs − br
)j

holds. Now, our objective is to maximize πRS (j = q∗) for R ∈ Z+. Here, πRS
provides maximum value atR if the inequality πR−1S < πRS > πR+1

S holds, i.e.,
R(R−1) < 2a2q

∗/(hs − 2β3q
∗) < R(R+1) holds. In collaborating system, the

joint profit is

πc(j, R) =

∞∑
i=1

p(i)ifi − ar
∞∑
i=1

ifi − Cs
∞∑

i=j+1

(i− j)fi

− C(R)j − 1

2
hsR− a1j −

a2j

R
+ bs

j∑
i=1

(j − i)fi.

Let R = kj(k > 0), then the profit function πc(j) is maximum at j if
the inequality πc(j − 1) < πc(j) > πc(j + 1) , i.e., the inequality φ(j − 1) <

α3 − β3k + 1
2hsk + a1 < φ(j) holds where φ(j) = bs

∑j
i=1 fi + 2β3kj. Varying

the value of k, we may find out an optimum value of k such that the joint profit
is maximized.

4 Numerical Examples

4.1 Example 1

We consider the values of parameters in appropriate units for continuous dis-
tribution function as follows: α1 = 50, α2 = 30, α3 = 10, β1 = 0.10, β2 = 0.15,
β3 = 0.01, ar = 0.25, a1 = 0.25, a2 = 100, hs = 2, br = 5, bs = 4, Cs = 25,
µ = 50 and σ = 5. The demand of end customers follows normal distribution
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function f(x) = 1
σ
√
2π
e−

1
2 (
x−µ
σ )2 , ∀x ∈ (−∞,+∞) such that

∫ +∞
−∞ f(x)dx = 1.

If retailer is Stakellberg leader and supplier is the follower of retailer, then the
optimal solutions are Q∗ = 49.9984, R∗ = 99.9968, π∗R = 1070.11, π∗S = 510.49
and the total profit of the chain is π∗c = (π∗R + π∗S) = 1580.60. In centralized
system, the optimal solutions are Q∗ = 53.4251, R∗ = 107.102, π∗c = 1585.94
which is better than the decentralized system. In centralized system, the profit
is distributed according to their investment in the chain, i.e., the expected profit
of retailer is equal to π∗c ( expected cost of retailer

expected cost of the whole chain ) and expected profit of

supplier is equal to π∗c ( expected cost of supplier
expected cost of the whole chain ). At the optimal values of

Q and R, the expected cost of retailer, supplier and whole chain are 1143.81,
654.80 and 1798.61. The expected profits of retailer and supplier are 1008.56
and 577.38 respectively. In this collaborating system, agreement of buyback
and delivery in due time are strictly followed by retailer and supplier. The
expected profits of the retailer (Figure 1(a)) and expected profit of the supplier
(Figure 1(b)) in decentralized system are concave functions.

a) b)

Figure 1. Expected average profits: a) πR of the retailer versus lot size (Q), b) πS of the
supplier versus replenishment size (R).

Also, Figure 2(a) shows concavity of the expected profit of the chain in
centralized system.

a) b)

Figure 2. Expected average profits: a) πc of collaborating system versus lot size (Q) and
replenishment size (R) in case of normal distribution, b) (πc ) of collaborating system

versus lot size (Q) and replenishment size (R) in case of distribution free.

Math. Model. Anal., 23(4):582–595, 2018.
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In distribution free case of centralized system, values of all parameters
are same as Example 4.1. Then, the optimal solutions are Q∗ = 97.5481,
R∗ = 630.758, π∗c = 1391.64. Here, Figure 2(b) shows clearly concavity of the
expected profit of the chain.

4.2 Example 2

For discrete distribution of demand of end customers, we consider probability

of occurrence of i unit as fi that follows Poisson distribution fi = µie−µ

i! , (i =
1, 2, . . .. In this case, values of all parameters are considered as same as Exam-
ple 4.1. If retailer is decision maker and supplier is the follower of retailer, then
the optimal solutions are Q∗ = j = 52, R∗ = 104, π∗R = 1039.44, π∗S = 517.53
and the total profit of the chain is π∗c = (π∗R + π∗S) = 1556.97. In centralized
system, the optimal solutions are k∗ = 2, Q∗ = j = 55, R∗ = 110, π∗c = 1563.49
which is larger than the decentralized system.
The above conjectures involved in the proposed model are observed in retailing
systems of fashion/textiles products. In this supply chain, if the members of
the channel stock too much that result in higher cost for holding huge stock
but can recover some salvage value for the excess stock. On the other hand,
if any member stocks too little, he/she loses profit as well as goodwill from
the downstream members. In such stock out situation, she/he has to satisfy
the downstream members at expensive cost from alternative sources. As the
demand is uncertain in nature, each member of the chain has to quantify how
much to stock to best fit supply with demand. The proposed model suggests
to the managers of the retailer and the supplier to find out optimum order
quantities based on the forecast of the demand of the downstream members,
selling prices and cost factors so that the profit of each member is maximized.
Quite often, forecasting of future demand of commodities is quite difficult as
the demand is not deterministic. In this case, suitable probability distribu-
tion of the demand function based on prior knowledge of distribution is very
important issue. Our model helps the management to choose the suitable sce-
nario among three models (continuous distribution, discrete distribution and
distribution free cases) based on the features of the market.

5 Conclusions

The newsvendor problem is one of the classical problems in inventory litera-
ture. In this problem, no cost for inventory is taken into account if the ordered
quantity is less than the demand but penalty cost of shortage is considered in
stock out situation. Several authors have extended this problem incorporating
several issues. The objective of this proposed article is to extend the analysis
of the problem of a supply chain of supplier and retailer for uncertain demand
of the end customers. This model considers several issues like as buyback
policy, variable costs and profit per unit item those are monotonic decreasing
functions of ordered sizes. Quite often, the purchasing costs (i.e., price break)
of the units of the channel members depend on the lot sizes. The problems
of individual and joint/collaborative model of the channel members are well
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analyzed and the numerical results show that the collaborating system always
provides better results than the individual profit of the channel members. Here,
the joint profit of the chain is distributed over the members according to their
contribution in the chain. Our model analyzes the problems both for contin-
uous and discrete distribution of the demand. Moreover, the distribution free
case is studied while demand does not follow any known distribution function.
In such situation, the mean and standard deviation are measured using prior
knowledge of data of the business organization. The proposed model helps to
the management of decision makers of the chain how much quantities of the
product would be ordered by the supplier and the retailer so that the joint
profit is maximized. As far as the knowledge of the authors goes, such model
of news-vendor in supply chain including several issues has yet been studied in
previous literature.
The proposed model considers two echelon (retailer and supplier) supply chain
with deterministic cost factors for single item only. These limitations can be
waived by considering multi-echelon supply chain for multi-items with variable
cost factors. Our model could be extended immediately for substitute and
complementary products implementing dual channel (online and offline) mar-
keting system which are more relevant in fashion /textile industries. In future
research, one can study our model by various game theories including pricing
competition, i.e., price bargaining among the channel members both in vertical
and horizontal levels of multi-echelon supply chain.
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