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Abstract In practice, a supplier often offers its retailers a permissible delay period M to
settle their unpaid accounts. Likewise, a retailer in turn offers another trade credit period N
to its customers. The benefits of trade credit are not only to attract new buyers who consider
it a type of price reduction, but also to provide a competitive strategy other than introduce
permanent price reductions. On the other hand, the policy of granting credit terms adds an
additional cost to the seller as well as an additional dimension of default risk. In this paper,
we first incorporate the fact that trade credit has a positive impact on demand but negative
impacts on costs and default risks to establish an economic order quantity model for the seller
in a supply chain with up-stream and down-stream trade credits. Then we derive the necessary
and sufficient conditions to obtain the optimal replenishment time and credit period for the
seller. Finally, we use some numerical examples to illustrate the theoretical results.

Keywords Inventory · Permissible delay · Trade credits · Seller · Finance

1 Introduction

In the classical economic order quantity (EOQ) model, it is assumed that the retailer must
pay for the items as soon as receiving them. In practice, a supplier frequently offers its retail-
ers a delay of payment up to M periods (i.e., an up-stream trade credit). Usually, there is no
interest if the outstanding amount is paid within the permissible delay period. However, if the
payment is not paid in full by the end of the permissible delay period, then interest is charged
on the outstanding amount. Similarly, a retailer in turn often offers another credit period
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of N to its customers (i.e., a down-stream trade credit). The permissible delay in payment
produces two benefits to the seller: (1) it attracts new buyers who consider it to be a type of
price reduction, and (2) it may be applied as an alternative to price discount because it does
not provoke competitors to reduce their prices and thus introduce lasting price reductions.
On the other hand, the policy of granting credit terms adds not only an additional cost but
also an additional dimension of default risk to the seller.

By assuming a retailer’s selling price per unit is equal to its purchase cost per unit, Goyal
(1985) first developed an EOQ model for a retailer when a supplier offers a fixed permissible
delay period. Although Dave (1985) commented Goyal’s model by addressing the fact that
a retailer’s unit selling price is necessarily higher than its unit purchase cost, his viewpoint
did not draw much attention to the researchers in this field until Teng (2002). Shah (1993)
considered a stochastic inventory model when delays in payments are permissible. Aggarwal
and Jaggi (1995) extended Goyal’s model to consider deteriorating items. Jamal et al. (1997)
further generalized Aggarwal and Jaggi’s model to allow for shortages. Hwang and Shinn
(1997) added the pricing strategy to the model by Goyal (1985), and developed the optimal
price and lot sizing for a retailer under the condition of permissible delay in payments. Chung
(1998) developed an alternative approach to determine the economic order quantity under
the condition of trade credit. By assuming a retailer’s unit selling price is higher than its pur-
chase cost per unit, Teng (2002) provided an alternative conclusion from Goyal (1985) and
proved that it makes economic sense for a well-established buyer to order less quantity and
take the benefits of the permissible delay more frequently. Chang et al. (2003) developed an
EOQ model for deteriorating items under supplier credits linked to ordering quantity. Chung
and Huang (2003) developed an economic production quantity model (EPQ) for a retailer
when the supplier offers a permissible delay in payments. Huang (2003) extended Goyal’s
model to develop an EOQ model in which the supplier offers the retailer a permissible delay
periodM , and the retailer in turn provides a trade credit period N (with N ≤ M) to his/her
customers. Recently, Teng and Goyal (2007) complemented the shortcoming of Huang’s
model and proposed a generalized formulation. Many related articles can be found in Chang
and Teng (2004), Chung and Liao (2004), Goyal et al. (2007), Huang (2004, 2007), Huang
and Hsu (2008), Liao et al. (2000), Ouyang et al. (2005), Ouyang et al. (2006), Shinn and
Hwang (2003), Teng and Chang (2009) and Teng et al. (2005, 2006, 2007).

In all these articles described above, the EOQ/EPQ inventory models are studied only
from the perspective of the buyer whereas in practice the length of the credit period is set
by the seller. So far, how to determine the optimal length of the credit period for the seller
has received very little attention by the researchers. Abad and Jaggi (2003) determined the
seller’s and the buyer’s policies under non-cooperative as well as cooperative relationships.
However, in their model, the demand rate was not affected by offering a permissible delay.
Lately, Jaggi et al. (2008) developed the optimal credit as well as replenishment policy jointly
for the vendor, but did not implement the fact that granting credit terms adds not only an addi-
tional cost but also an additional dimension of default risk to the seller. Some other related
papers in Supply Chain and Finance can be seen in Jaruphongsa and Lee (2008), Migdalas
et al. (2004), Pardalos and Tsitsiringos (2002) and Sharma (2009).

By contrast to most researchers focusing only from the perspective of the buyer, we will
establish an EOQ model for a seller to obtain its optimal credit period and replenishment
time by incorporating the facts that (1) the credit period has a positive impact on demand but
negative impacts on costs and default risks, (2) both the supplier and the retailer often offer
trade credits to their buyers, and (3) the longer the credit period, the higher the default risk
as well as the cost. In fact, the proposed model is an extension of Teng and Chang (2009) by
considering both up-stream and down-stream trade credits. We also establish the necessary
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and sufficient conditions for finding the optimal solution, and characterize the impact of
various parameters on the optimal solution. Finally, we provide some numerical examples to
illustrate the theoretical results.

2 Notation and assumptions

The following notation and assumptions are used in the paper.

2.1 Notation

A The retailer’s ordering cost per order
c The retailer’s purchasing cost per unit
p The retailer’s selling price per unit, with p > c
h The retailer’s unit holding cost per year excluding interest charge
Ie The retailer’s interest earned per dollar per year
Ic The retailer’s interest charged per dollar per year
M The up-stream trade credit period in years offered by the supplier
N The down-stream trade credit period in years offered by the retailer (a decision

variable)
D(N ) The retailer’s annual demand rate which is a function of N
T The retailer’s replenishment cycle time in years (a decision variable)
Q The retailer’s order quantity
TP(N , T ) The retailer’s annual expected total profit, which is a function of N and T

2.2 Assumptions

The following assumptions are made to establish the mathematical inventory model.

1. In today’s global competition, many retailers have no pricing power.Therefore, in today’s
global competition and low inflation environment, we may assume without loss of gen-
erality (WLOG) that the selling price is constant within a year.

2. As stated in Jaggi et al. (2008), “it is observed that credit period offered by the retailer
to its customers has a positive impact on demand of an item.” For simplicity, we assume
that the buyer’s demand rate D(N ) with the retailer’s trade credit of N periods is given
by

D(N ) = K eaN , (1)

where K and a are positive constants.
3. Since the longer the credit period to the buyer, the higher the default risk, we may assume

WLOG that the rate of default risk given the credit period N is

F(N ) = 1 − e−bN , (2)

where b is a positive constant.
4. The retailer would settle the account at time M and pay for the interest charges on items

in stock with rate Ic over the interval [M, T ] when T ≥ M . Alternatively, the retailer
settles the account at time M and is not required to pay any interest charge for items in
stock during the whole cycle when T ≤ M . On the other hand, the retailer can accumu-
late revenue and earn interest during the period from N to M (when M > N ) with rate
Ie under the trade credit conditions.
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Fig. 1 N ≤ M and M ≤ T + N
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Fig. 2 N ≤ M and T + N ≤ M
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5. Lead time is negligible.
6. Shortages are not allowed to occur.

3 Mathematical formulation of the model

From the values of N and M , we have two potential cases: (1)N ≤ M , and (2)N ≥ M .

Case 1. N ≤ M Based on the values of M (i.e., the time at which the retailer must pay the
supplier to avoid interest charge) and T + N (i.e., the time at which the retailer receives the
payment from the last customer), we have two possible sub-cases. If T + N > M , then the
retailer pays off all units sold by M − N at time M , keeps the profits, and starts paying for
the interest charges on the items sold after M − N , which is shown in Fig. 1. Otherwise (i.e.,
if T + N ≤ M), the retailer will receive the total revenue at time T + N , and will pay off the
total purchase cost at time M . The graphical representation of this case is shown in Fig. 2.
Now, let us discuss the detailed formulation in each sub-case.

Sub-case 1–1: M ≤ T + N In this sub-case, the retailer can not payoff the supplier by M
because the supplier credit period M is shorter than the customer last payment time T + N .
As a result, the retailer must finance all items sold after time M − N at an interest charged
Ic per dollar per year. As a result, the interest charged per cycle is (c/p)Ic times the area of
the triangle BCD shown in Fig. 1. Notice that (1) the vertical axis in Figs. 1, 2, 3 represents
the cumulative revenue, not cumulative sale volume, and (2) the slope of the increasing line
in Figs. 1, 2, and 3 is pD(N ). Therefore, the interest charged per year is given by

cIc D(N )

2T
[T + N − M]2. (3)

On the other hand, the retailer starts selling products at time 0, but getting the money at
time N . Consequently, the retailer accumulates revenue in an account that earns Ie per dollar
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Fig. 3 N ≥ M Cumulative revenue 

slope = p D(N)

Loan amount
B A

0 NM T T+N
Time

D

per year starting from N through M . Therefore, the interest earned per cycle is Ie multiplied
by the area of the triangle NMB as shown in Fig. 1. Hence, the interest earned per year is

pIe D(N )(M − N )2

2T
. (4)

Since the annual expected revenue is pD (N )e−bN , the annual cost is cD(N ), the annual
ordering cost is A/T , and the annual holding cost excluding interest charges is hD(N )T /2,
we obtain the annual expected total profit for the retailer as

TP1 (N , T ) = pD (N ) e−bN − cD(N ) − A

T
− h D(N )T

2
− cIc D(N )

2T
[T + N − M]2

+ pIe D(N )(M − N )2

2T
(5)

Sub-case 1–2: M > T + N In this sub-case, the retailer receives the total revenue at time
T + N , and is able to pay the supplier the total purchase cost at time M . Consequently, there
is no interest charge while the interest earned per cycle is Ie multiplied by the area of the
trapezoid on the interval [N , M] as shown in Fig. 2. As a result, the annual interest earned is

pIe D(N )T 2

2T
+ pIe D(N )T (M − T − N )

T
= pIe D(N )(M − N ) − pIe D(N )T

2
(6)

Hence, the annual expected total profit is

TP2(N , T ) = pD(N )e−bN − cD(N ) − A

T
− h D(N )T

2
+ pIe D(N )(M − N )

− pIe D(N )T

2
(7)

Case 2. N ≥ M
Since N ≥ M , there is no interest earned for the retailer. In addition, the retailer must

finance all items ordered at time M at an interest charged Ic per dollar per year, and start
to payoff the loan after time N . Hence, the interest charged per cycle is (c/p)Ic multiplied
by the area of the trapezoid on the interval [M, T + N ], as shown in Fig. 3. Therefore, the
interest charged per year is given by

cIc D(N )

2
[2(N − M) + T ]. (8)

Hence, the annual expected total profit is

TP3(N ,T ) = pD(N )e−bN − cD (N ) − A

T
− h D(N )T

2
−cIc D(N )

2
[2(N−M) + T ] (9)
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4 Optimal trade credit period and replenishment time

Since N ≥ M has no sub-cases, let us discuss this case first. Substituting D(N ) = K eaN

into (9), and re-arranging terms, we have

TP3(N , T ) = pK e(a−b)N − cK eaN − A

T
− (h + cIc)T

2
K eaN − cIc(N − M)K eaN (10)

To maximize the annual expected total profit T P3(N , T ) in (10), taking the first-order deriv-
atives T P3(N , T ) with respect to N and T , and setting the result to be zero, we have

∂TP3(N , T )

∂ N
= K eaN

{
(a−b)pe−bN −ac−a(h + cIc)T

2
−acIc(N−M)−cIc

}
= 0,

(11)

and

∂TP3(N , T )

∂T
= A

T 2 − (h + cIc)

2
K eaN = 0, (12)

respectively. Consequently, if N ≥ M , then the retailer’s optimal trade credit period in years
is:

N∗
3 = 1

b
ln

(a − b)p

a[c + T
2 (h + cIc) + cIc(N − M + 1

a )] , (13)

and the retailer’s optimal replenishment cycle time is

T ∗
3 =

√
2A

D(N )(h + cIc)
. (14)

For the second-order derivatives of T P3(N , T ) with respect to Nand T , it is easy to see that
if (a − b)2 p < a2c, then T P3(N , T ) is a concave function at point (N∗

3 , T ∗
3 ). Notice that

we are unable to prove that T P3(N , T ) is a concave function for any given point (N , T ).
Consequently, (N∗

3 , T ∗
3 ) is a local minimum of T P3(N , T ). For detailed proof, please see

Appendix A. Notice that the right-hand side of (13) is a function of N . Hence, we do not
have a closed-form solution to find the optimal credit period N∗

3 . Here, we propose the fol-
lowing algorithm to obtain the optimal credit period. By using the fact that T P3(N , T ) is a
concave function at point (N∗

3 , T ∗
3 ) if (a − b)2 p < a2c, we know the proposed algorithm

will converge to an optimal solution.

An Algorithm for the optimal credit period and replenishment time

Step 1. Set i = 0 and select an initial value for Ni .
Step 2. Substitute Ni into (14) to get Ti , and then substitute Ni and Ti the right-hand side

of (13) to get Ni+1.
Step 3. If Ni+1 ≈ Ni , then we set N* = Ni+1, and substitute N* into (14) to have T *, and

stop. Otherwise, set i = i + 1, and go back to Step 2.

Next, let us discuss the case in which M > T + N . Substituting D(N ) = K eaN into (7),
and re-arranging terms, we get

TP2(N , T ) = pK e(a−b)N − cK eaN − A

T
− (h + pIe)T

2
K eaN + pIe(M − N )K eaN .

(15)
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Again, by taking the first-order derivatives of T P2(N , T ) with respect to Nand T , and setting
the results to be zero, we obtain

∂TP2(N , T )

∂ N
= K eaN

{
(a − b)pe − bN − ac−a(h + pIe)T

2
+ pIe[a(M − N )− 1]

}
= 0,

(16)

and
∂TP2(N , T )

∂T
= A

T 2 − 1

2
(h + pIe)K eaN = 0, (17)

respectively. As a result, if M > T + N , then the retailer’s optimal trade credit period in
years is:

N∗
2 = 1

b
ln

(a − b)p

a[c + (h+pIe)T
2 + pIe(M − N − 1

a )] , (18)

and the retailer’s optimal replenishment cycle time is

T ∗
2 =

√
2A

D(N )(h + pIe)
. (19)

For the second-order derivatives of T P2(N , T ) with respect to Nand T , it is clear that if
(a − b)2 p < a2c and aM < 2, then T P2(N , T ) is a concave function at point (N∗

2 , T ∗
2 ). For

detailed proof, please see Appendix B. Similarly, the right-hand side of (18) is a function
of N . Hence, we do not have a closed-form solution to find the optimal credit period N∗

2 .
However, we can use the recursive algorithm above to obtain the optimal N∗

2 and T ∗
2 . From

the fact that T P2(N , T ) is a concave function at point (N∗
2 , T ∗

2 ) if (a − b)2 p < a2c and
aM < 2, we know the proposed algorithm will converge to an optimal solution.

Finally, let us discuss the last case in which N ≤ M ≤ T +N . Substituting D(N ) = K eaN

into (5), and re-arranging terms, we obtain

T P1(N , T ) = pK e(a−b)N − cK eaN − A

T
− (h + cIc)T

2
K eaN .

+ cIc(M − N )K eaN + pIe − cIc

2T
(M − N )2 K eaN . (20)

Taking the first-order derivatives of T P1(N , T ) with respect to N and T , and setting the
results to be zero, we get

∂T P1(N , T )

∂ N
= K eaN

{
(a − b)pe−bN − ac − a(h + cIc)T

2

−cIc[1 − a(M − N )] − (pIe − cIc)

2T
(M − N )[2 − a(M − N )]

}
= 0,

(21)

and
∂T P1(N , T )

∂T
= A

T 2 − 1

2
(h + cIc)K eaN − (pIe − cIc)

2T 2 (M − N )2 K eaN = 0, (22)

respectively. Thus, if N ≤ M ≤ T + N , then the retailer’s optimal trade credit period in
years is:

N∗
1 = 1

b
ln

(a − b)p

a{c + (h+cIc)T
2 + cIc(

1
a − M + N ) + (pIe−cIc)(M−N )

2T ( 2
a − M + N )} , (23)
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and the retailer’s optimal replenishment cycle time is

T ∗
1 =

√
2A − (pIe − cIc)(M − N )2 D(N )

(h + cIc)D(N )
. (24)

For the second-order derivatives of T P1(N , T ) with respect to Nand T , it is clear that if
(a−b)2 p < a2c, a(M−N ) < 1, [2−a(M−N )]2 < 2, and 2A−(pIe−cIc)(M−N )2 D ≥ 0,
then T P1(N , T ) is a concave function at point (N∗

1 , T ∗
1 ). For detailed proof, please see Appen-

dix C. Due to the complexity of the problem, we do not have a closed-form solution to find
the optimal credit period N∗

1 because the right-hand side of (23) is a function of N . However,
we can use the recursive algorithm above to obtain the optimal N∗

1 and T ∗
1 . Next, we try to

explore the characteristics of the optimal solution.

5 Characteristics of the optimal solution

We first establish the characteristics of the optimal replenishment time, and then the optimal
credit period. For the case of N ≤ M , to ensure the condition of T ∗

1 + N ≥ M , we substitute
T ∗

1 in (24) into inequality T + N ≤ M , and obtain that

if and only if � ≡ 2A − (h + pIe)D(N )(M − N )2 ≥ 0, then T ∗
1 + N ≥ M. (25)

Likewise, we substitute T ∗
2 in (19) into inequality M ≥ T + N , and know that

if and only if � ≡ 2A − (h + pIe)D(N )(M − N )2 ≤ 0, then T ∗
2 + N ≥ M. (26)

From the above arguments, we obtain the following results.

Theorem 1 When N ≤ M,

(A) if � ≥ 0, then T ∗ = T ∗
1 ≥ M − N, and Q∗ = Q∗

1 = DT ∗
1 .

(B) if � ≤ 0, then T ∗ = T ∗
2 ≤ M − N, and Q∗ = Q∗

2 = DT ∗
2 .

(C) if � = 0, then T ∗ = T ∗
1 = T ∗

2 = M − N, and Q∗ = D(M − N ).

Proof It immediately follows from (25) and (26). ��
Note that Theorem 1 is a general form of the corresponding theoretical result in Chung

(1998), in which it requires Ic ≥ Ie, p = c, and N = 0. In addition, Theorem 1 is also an
extension of Theorem 1 in Teng and Goyal (2007), in which it assumes D is not affected
by N . A simple economical interpretation of Theorem 1 is as follows. It is clear from the
traditional EOQ model that the optimal order quantity is obtained when the ordering cost is
equal to the holding cost. Whenever the retailer orders items from the supplier, it receives the
benefit of D(N )(M − N )2 pIe/ 2 from the supplier’s up-stream trade credit of M minus his
down-stream trade credit of N to its customers. As a result, the true ordering cost is reduced
to A − [D(N )(M − N )2 pIe]/2. On the other hand, we know that the holding cost (exclud-
ing interest charges) for order D(N )(M − N ) units is D(N )(M − N )2h/2. Therefore if the
true ordering cost, A − [D(N )(M − N )2 pIe]/2, is higher than the holding cost for order
D(N )(M − N ) units, D(N )(M − N )2h/2, then the optimal lot size Q∗ = T ∗ D(N ) must
be higher than D(N )(M − N ) units. Hence, if � ≡ 2A − (h + pIe)D(N )(M − N )2 ≥ 0,
then T ∗ > M − N , and vice versa.

In the classical EOQ model, both the retailer and the customer are assumed to pay for
the products as soon as they receive them. Hence, it is a special case of Sub-case 1.2 with
M = N = 0. Therefore, the classical optimal EOQ is
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Q∗
4 = √

2AD(N )/(h + cIc) . (27)

As a result, we can easily obtain the following theoretical result.

Theorem 2 When N ≤ M and 2A − (pIe − cIc)(M − N )2 D(N ) ≥ 0,

(A) if pIe < cIc, then both Q∗
1and Q∗

2 are larger than Q∗
4.

(B) if pIe > cIc, then both Q∗
1and Q∗

2 are smaller than Q∗
4.

(C) if pIe = cIc, then Q∗
1 = Q∗

2 = Q∗
4.

Proof The reader can easily prove it from (19), (24), and (27). ��
Note that Theorem 2 is a generalization of Theorem 2 in Teng (2002), in which it assumes

N = 0. It is clear from (24) that if 2A − (pIe − cIc)(M − N )2 D(N ) < 0, then T ∗
1 as well as

Q∗
1 does not exist. A simple economical interpretation of Theorem 2 is as follows. It makes

economic sense for a well-established retailer (i.e., pIe > cIc) to order less quantity and
take the benefits of the permissible delay more frequently.

Next, let us discuss the case in which N ≥ M . When N ≥ M , we know from (14) that
T ∗

3 is

T ∗
3 = √

2A/[D(N )(h + cIc)]. (28)

Therefore, the optimal order quantity Q∗
3 is

Q∗
3 = T ∗

3 D(N ) = √
2AD(N )/(h + cIc) = Q∗

4. (29)

As a result, if N ≥ M , then the retailer’s optimal order quantity is exactly the same as the
classical economic order quantity.

Now, we establish the characteristics of the optimal credit period N∗. It is clear from the
optimal solution N∗ in (13), (18), and (23) that we have the following results.

Theorem 3 A higher value of p causes a higher value of N∗, while a higher value of b and
c causes a lower value of N∗.

Proof It immediately follows from (13), (18), and (23). ��
A simple economical interpretation of Theorem 3 is obvious. The higher the selling price,

the higher the sales revenue increases by the credit period. Meanwhile if the default risk b
and the purchase cost c are very huge, then it makes no sense to offer a long credit period.

6 Numerical examples

In order to illustrate the previous results, let us apply the theoretical results to solve the
following examples.

Example 1 A product sells at a store for $2.40. The retailer buys the product from a sup-
plier at $1.00 a piece. The supplier offers a permissible delay if the payment is made within
60 days (i.e., M = 2/12 = 1/6). This credit term in finance management is usually denoted
as “net 60” (e.g., see Brigham 1995). However, if the payment is not paid in full by the end of
60 days, then 6% interest (i.e., Ic = 0.06) is charged on the outstanding amount. We assume
that D(N ) = 3600e2N (i.e., a = 2) units, F(N ) = 1−e−N (i.e., b = 1), h = $0.50/unit/year,
A = $15.00 per order, and Ie = 5% if the store deposits its revenue into a mutual fund
account.
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Table 1 The optimal solution for the case of N ≤ M

i 0 1 2 3 4 5

Ni 0.0800 0.1080 0.1127 0.1135 0.1137 0.1137
Di (N ) 4225 4468 4510 4517 4519 4519
Ti 0.1090 0.1078 0.1075 0.1075 0.1075 0.1075

Table 2 The optimal solution for
the case of N ≥ M

i 0 1 2 3

Ni 0.2000 0.2041 0.2040 0.2040
Di (N ) 5371 5415 5414 5414
Ti 0.0999 0.0995 0.0995 0.0995

The case of N ≤ M is more interesting than the other case of N ≥ M , which has no
sub-cases. Let us start with the case of N ≤ M . We start here with N0 = 0.0800 simply
because it is a simple number about M/2 = 0.0833. Since

� ≡ 2A − (h + pIe)D(M − N )2 = 30 − (0.5 + 0.12)(4225)(0.0867)2 > 0,

we know from Theorem 1 that the optimal replenishment interval is T ∗ = T ∗
1 . By using the

proposed algorithm, (23) and (24), we can easily obtain the following Table 1. Hence, the
retailer’s optimal solution is N∗ = 0.1137 , and T ∗ = 0.1075.

Example 2 Next, let us run the numerical example for the case of N ≥ M . We assume that
all parameters here are the same as in Example 1 except p = $2.60. Since N ≥ M , we
may start with N0 = 0.2000, which is larger than M = 0.1667. By using the proposed
algorithm, (13) and (14), we get Table 2. Hence, the retailer’s optimal solution in Example 2
is N∗ = 0.2040, and T ∗ = 0.0995.

7 Conclusions

In this paper, we have developed an EOQ model to reflect the following facts: (1) both the
supplier and the retailer often offer trade credits to their buyers in order to increase sales,
(2) the credit period has a positive impact on demand, and (3) the longer the credit period,
the higher the default risk as well as the cost. Then we have derived the necessary and suffi-
cient conditions to obtain the optimal solution. Although we have not obtained a closed-form
solution to the optimal credit period for the retailer, we have proposed an algorithm to obtain
it. In addition, we have characterized the influence of the parameters to the optimal solution.
Finally, we have provided some numerical examples to illustrate the proposed model and its
optimal solution.

For further research, this paper can be extended in several ways. For instance, we may add
the constant deterioration rate for the items. Also, we could generalize the model to allow
for shortages. Finally, we could consider the effect of inflation rates on the economic order
quantity.
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Appendix A

If (a − b)2 p < a2c, then TP3(N , T ) is a concave function at point (N∗
3 , T ∗

3 ).

Proof Taking the second-order derivatives of TP3(N , T ) with respect to Nand T , we get

∂2TP3(N , T )

∂ N 2 = D

{
(a − b)2 pK e−bN − a2c − a2hT

2

−a2cIc

2
[2(N − M) + T ] − 2acIc

}
< 0, (A1)

∂2TP3(N , T )

∂T 2 = −2A

T 3 < 0, (A2)

∂2TP3(N , T )

∂T ∂ N
= −a

2
(h + cIc)K eaN , (A3)

and

[
∂2TP3(N , T )

∂ N 2

] [
∂2TP3(N , T )

∂T 2

]
−

[
∂2TP3(N , T )

∂T ∂ N

]2

at (N∗
3 , T ∗

3 )

= −D{(a − b)2 pe−bN − a2c − a2cIc(N − M) − 2acIc}[2A/T 3]
+a2 A(h + cIc)D/T 2 − [a(h + cIc)D]2/4

= −D{(a − b)2 pe−bN − a2c − a2cIc(N − M) − 2acIc}[2A/T 3]
+[a(h + cIc)D]2/4 > 0. (A4)

Consequently, if(a − b)2 p < a2c, then the Hessian matrix associated with T P3(N , T ) is
negative definite at (N∗

3 , T ∗
3 ), which implies that T P3(N , T ) is a concave function at point

(N∗
3 , T ∗

3 ).

Appendix B

If (a − b)2 p < a2c and aM < 2, then T P2(N , T ) is a concave function at point (N∗
2 , T ∗

2 ).

Proof

∂2TP2(N , T )

∂ N 2 = K eaN
{
(a − b)2 pe−bN − a2c − a2(h + pIe)T

2

+pIe[a2(M − N ) − 2a]
}

< 0, (B1)

∂2TP2(N , T )

∂T 2 = −2A

T 3 < 0, (B2)

∂2TP2(N , T )

∂T ∂ N
= −a

2
(h + pIe)K eaN , (B3)
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and

[
∂2TP2(N , T )

∂ N 2

] [
∂2TP2(N , T )

∂T 2

]
−

[
∂2TP2(N , T )

∂T ∂ N

]2

at (N∗
2 , T ∗

2 )

= −D{(a − b)2 pe−bN − a2c + pIe[a2(M − N ) − 2a}[2A/T 3]
+a2 A(h + pIe)D/T 2 − [a(h + pIe)D]2/4

= −D{(a − b)2 pe−bN − a2c + pIe[a2(M − N ) − 2a}[2A/T 3]
+[a(h + cIc)D]2/4 > 0. (B4)

As a result, if(a − b)2 p < a2c and aM < 2, then the Hessian matrix associated with
T P2(N , T ) is negative definite at (N∗

2 , T ∗
2 ), which implies that T P2(N , T ) is a concave

function at point (N∗
2 , T ∗

2 ). ��

Appendix C

If (a − b)2 p < a2c, a(M − N ) < 2, [2 − a(M − N )]2 < 2, and 2A − (pIe − cIc)(M − N )2

D ≥ 0, thenT P1(N , T ) is a concave function at point (N∗
1 , T ∗

1 ).

Proof

∂2T P1(N , T )

∂ N 2 = K eaN
{
(a−b)2 pe−bN −a2c−a2(h+cIc)T

2
− acIc[2 − a(M − N )]

− (pIe − cIc)

2T
(M − N ){2 − [2 − a(M − N )]2}

}
< 0, (C1)

∂2T P1(N , T )

∂T 2 = −2A − (pIe − cIc)(M − N )2 D

T 3 = − (h + cIc)D

T
< 0, (C2)

∂2T P1(N , T )

∂T ∂ N
= −

{
a

2
(h + cIc) + (pIe − cIc)

2T 2 (M − N )[a(M − N ) − 2]
}

D, (C3)

and

[
∂2T P1(N , T )

∂ N 2

] [
∂2T P1(N , T )

∂T 2

]
−

[
∂2T P1(N , T )

∂T ∂ N

]2

at (N∗
1 , T ∗

1 )

=
[

U − a2(h + cIc)T D

2

]
−

[
(h + cIc)D

T

]
−

[a

2
(h + cIc) + V

]2
D2

>

[
a2(h + cIc)T D

2

] [
(h + cIc)D

T

]
−

[a

2
(h + cIc)

]2
D2 = [a(h + cIc)]2

4
D2 > 0,

where U = D{(a − b)2 pe−bN − a2c − acIc[2 − a(M − N )] − (pIe−cIc)
2T (M − N ){2 − [2 −

a(M − N )]2}} is a negative number, and V = (pIe−cIc)

2T 2 (M − N )[a(M − N ) − 2] is also a

negative number. Therefore, if (a − b)2 p < a2c, a(M − N ) < 2, [2 − a(M − N )]2 < 2,
and 2A − (pIe − cIc)(M − N )2 D ≥ 0, then the Hessian matrix associated with T P1(N , T )

is negative definite at (N∗
1 , T ∗

1 ), which implies T P1(N , T ) is a concave function at point
(N∗

1 , T ∗
1 ). ��
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