12 research outputs found

    Mephedrone (4-methylmethcathinone) and intracranial self-stimulation in C57BL/6J mice: Comparison to cocaine

    Get PDF
    The recreational use of cathinone-derived synthetic stimulants, also known as "bath salts", has increased during the last five years. A commonly abused drug in this class is mephedrone (4-methylmethcathinone or "meow-meow"), which alters mood and produces euphoria in humans. Intracranial self-stimulation (ICSS) measures the behavioral effects of neuroactive compounds on brain reward circuitry. We used ICSS to investigate the ability of mephedrone and cocaine to alter responding for electrical stimulation of the medial forebrain bundle in C57BL/6J mice. Adult male C57BL/6J mice (n=6) implanted with unipolar stimulating electrodes at the level of the lateral hypothalamus responded for varying frequencies of brain stimulation reward (BSR). The frequency that supported half maximal responding (EF50), the BSR threshold (θ(0)), and the maximum response rate were determined before and after intraperitoneal administration of saline, mephedrone (1.0, 3.0, or 10.0 mg/kg), or cocaine (1.0, 3.0, or 10.0 mg/kg). Mephedrone dose-dependently decreased EF50 (max. effect=72.3% of baseline), θ(0) (max. effect=59.6% of baseline), and the maximum response rate (max. effect=67.0% of baseline) beginning 15 min after administration. Beginning immediately after administration, cocaine dose-dependently lowered EF50 (max. effect=66.4% of baseline) and θ(0) (max. effect=60.1% of baseline) but did not affect maximum response rate. These results suggest that mephedrone, like cocaine, potentiates BSR, which may indicate its potential for abuse. Given the public health concern of stimulant abuse, future studies will be necessary to determine the cellular and behavioral effects of acute and chronic mephedrone use

    Levetiracetam results in increased and decreased alcohol drinking with different access procedures in C57BL/6J mice

    Get PDF
    The antiepileptic, levetiracetam (LEV), has been investigated for the treatment of alcohol abuse. However, little is known about how LEV alters the behavioral effects of alcohol in laboratory animals. The acute effects of LEV on alcohol drinking by male C57BL/6J mice were investigated using two different drinking procedures, limited access (drinking-in-the-dark, or DID) and intermittent access (IA) drinking. In the first experiment (DID), mice had access to a single bottle containing alcohol or sucrose for four hours every-other day. In the second experiment (IA), mice had intermittent access to two bottles, one containing alcohol or sucrose and one containing water, for 24 h on Mon/Wed/Fri. In both experiments, mice were administered LEV (0.3 – 100 mg/kg i.p.) or vehicle 30 min before access to the drinking solutions. In the DID mice, LEV increased alcohol intake from 4.3 to 5.4 g/kg, while in the IA mice LEV decreased alcohol intake from 4.8 to 3.0 g/kg in the first 4 h of access and decreased 24 h alcohol intake from 20 g/kg to approximately 15 g/kg. These effects appear specific to alcohol, as LEV did not affect sucrose intake in either experiment. LEV appears to differentially affect drinking in animal models of moderate and heavier alcohol consumption

    Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome

    Get PDF
    Angelman syndrome (AS) is a neurodevelopmental disorder caused by maternal deletions or mutations of the ubiquitin ligase E3A (UBE3A) allele and characterized by minimal verbal communication, seizures, and disorders of voluntary movement. Previous studies have suggested that abnormal dopamine neurotransmission may underlie some of these deficits, but no effective treatment currently exists for the core features of AS. A clinical trial of levodopa (l-DOPA) in AS is ongoing, although the underlying rationale for this treatment strategy has not yet been thoroughly examined in preclinical models. We found that AS model mice lacking maternal Ube3a (Ube3am–/p+ mice) exhibit behavioral deficits that correlated with abnormal dopamine signaling. These deficits were not due to loss of dopaminergic neurons or impaired dopamine synthesis. Unexpectedly, Ube3am–/p+ mice exhibited increased dopamine release in the mesolimbic pathway while also exhibiting a decrease in dopamine release in the nigrostriatal pathway, as measured with fast-scan cyclic voltammetry. These findings demonstrate the complex effects of UBE3A loss on dopamine signaling in subcortical motor pathways that may inform ongoing clinical trials of l-DOPA therapy in patients with AS

    Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome

    No full text
    Angelman syndrome (AS) is a neurodevelopmental disorder caused by maternal deletions or mutations of the ubiquitin ligase E3A (UBE3A) allele and characterized by minimal verbal communication, seizures, and disorders of voluntary movement. Previous studies have suggested that abnormal dopamine neurotransmission may underlie some of these deficits, but no effective treatment currently exists for the core features of AS. A clinical trial of levodopa (l-DOPA) in AS is ongoing, although the underlying rationale for this treatment strategy has not yet been thoroughly examined in preclinical models. We found that AS model mice lacking maternal Ube3a (Ube3a(m–/p+) mice) exhibit behavioral deficits that correlated with abnormal dopamine signaling. These deficits were not due to loss of dopaminergic neurons or impaired dopamine synthesis. Unexpectedly, Ube3a(m–/p+) mice exhibited increased dopamine release in the mesolimbic pathway while also exhibiting a decrease in dopamine release in the nigrostriatal pathway, as measured with fast-scan cyclic voltammetry. These findings demonstrate the complex effects of UBE3A loss on dopamine signaling in subcortical motor pathways that may inform ongoing clinical trials of l-DOPA therapy in patients with AS

    Mephedrone (4-methylmethcathinone) and intracranial self-stimulation in C57BL/6J mice: Comparison to cocaine

    No full text
    The recreational use of cathinone-derived synthetic stimulants, also known as "bath salts", has increased during the last five years. A commonly abused drug in this class is mephedrone (4-methylmethcathinone or "meow-meow"), which alters mood and produces euphoria in humans. Intracranial self-stimulation (ICSS) measures the behavioral effects of neuroactive compounds on brain reward circuitry. We used ICSS to investigate the ability of mephedrone and cocaine to alter responding for electrical stimulation of the medial forebrain bundle in C57BL/6J mice. Adult male C57BL/6J mice (n=6) implanted with unipolar stimulating electrodes at the level of the lateral hypothalamus responded for varying frequencies of brain stimulation reward (BSR). The frequency that supported half maximal responding (EF50), the BSR threshold (θ(0)), and the maximum response rate were determined before and after intraperitoneal administration of saline, mephedrone (1.0, 3.0, or 10.0 mg/kg), or cocaine (1.0, 3.0, or 10.0 mg/kg). Mephedrone dose-dependently decreased EF50 (max. effect=72.3% of baseline), θ(0) (max. effect=59.6% of baseline), and the maximum response rate (max. effect=67.0% of baseline) beginning 15 min after administration. Beginning immediately after administration, cocaine dose-dependently lowered EF50 (max. effect=66.4% of baseline) and θ(0) (max. effect=60.1% of baseline) but did not affect maximum response rate. These results suggest that mephedrone, like cocaine, potentiates BSR, which may indicate its potential for abuse. Given the public health concern of stimulant abuse, future studies will be necessary to determine the cellular and behavioral effects of acute and chronic mephedrone use
    corecore