464 research outputs found
Mating system induced lags in rates of range expansion for different simulated mating systems and dispersal strategies : a modelling study
WM was part funded by the School of Biological Sciences, University of Aberdeen. XL was part funded by the CONTAIN programme funded under the Latin American Biodiversity Programme as part of the Newton Fund (NE/S011641/1)Peer reviewe
Refining Nodes and Edges of State Machines
State machines are hierarchical automata that are widely used to structure complex behavioural specifications. We develop two notions of refinement of state machines, node refinement and edge refinement. We compare the two notions by means of examples and argue that, by adopting simple conventions, they can be combined into one method of refinement. In the combined method, node refinement can be used to develop architectural aspects of a model and edge refinement to develop algorithmic aspects. The two notions of refinement are grounded in previous work. Event-B is used as the foundation for our refinement theory and UML-B state machine refinement influences the style of node refinement. Hence we propose a method with direct proof of state machine refinement avoiding the detour via Event-B that is needed by UML-B
Recommended from our members
Comparison of two different indentation techniques in studying the in-situ viscoelasticity behavior of liquid crystals
YesLiquid crystal is a new emerging biomaterial. The physical property of liquid crystal plays a role in supporting the
adhesion of cells. Nano and microball indentation techniques were applied to determine the elastic modulus or
viscoelasticity of the cholesteryl ester liquid crystals in the culture media. Nano-indentation results (108 ± 19.78 kPa, N =
20) agreed well with the microball indentation (110 ± 19.95 kPa, N = 60) for the liquid crystal samples incubated for 24
hours at 37o
C, respectively. However, nanoindentation could not measure the modulus of the liquid crystal (LC) incubated
more than 24 hours. This is due to the decreased viscosity of the liquid crystal after immersion in the cell culture media for
more than 24 hours. Alternatively, microball indentation was used and the elastic modulus of the LC immersed for 48
hours was found to decrease to 55 ± 9.99 kPa (N = 60). The microball indentation indicated that the LC did not creep after
40 seconds of indentation. However, the elastic modulus of the LC was no longer measurable after 72 hours of incubation
due to the lost of elasticity. Microball indentation seemed to be a reliable technique in determining the elastic moduli of the
cholesteryl ester liquid crystals.Science Fund Vot. No. S024 or Project No. 02- 01-13-SF0104 and FRGS Vot. No. 1482 awarded by Malaysia Ministry of Educatio
Independent Eigenstates of Angular Momentum in a Quantum N-body System
The global rotational degrees of freedom in the Schr\"{o}dinger equation for
an -body system are completely separated from the internal ones. After
removing the motion of center of mass, we find a complete set of
independent base functions with the angular momentum . These are
homogeneous polynomials in the components of the coordinate vectors and the
solutions of the Laplace equation, where the Euler angles do not appear
explicitly. Any function with given angular momentum and given parity in the
system can be expanded with respect to the base functions, where the
coefficients are the functions of the internal variables. With the right choice
of the base functions and the internal variables, we explicitly establish the
equations for those functions. Only (3N-6) internal variables are involved both
in the functions and in the equations. The permutation symmetry of the wave
functions for identical particles is discussed.Comment: 24 pages, no figure, one Table, RevTex, Will be published in Phys.
Rev. A 64, 0421xx (Oct. 2001
Dielectrophoresis of charged colloidal suspensions
We present a theoretical study of dielectrophoretic (DEP) crossover spectrum
of two polarizable particles under the action of a nonuniform AC electric
field. For two approaching particles, the mutual polarization interaction
yields a change in their respective dipole moments, and hence, in the DEP
crossover spectrum. The induced polarization effects are captured by the
multiple image method. Using spectral representation theory, an analytic
expression for the DEP force is derived. We find that the mutual polarization
effects can change the crossover frequency at which the DEP force changes sign.
The results are found to be in agreement with recent experimental observation
and as they go beyond the standard theory, they help to clarify the important
question of the underlying polarization mechanisms
Direct radiocarbon dating of fish otoliths from mulloway (Argyrosomus japonicus) and black bream (Acanthopagrus butcheri) from Long Point, Coorong, South Australia
Accelerator Mass Spectrometry (AMS) radiocarbon dates (n=20) determined on fish otoliths from mulloway (Argyrosomus japonicus) and black bream (Acanthopagrus butcheri) are reported from five sites at Long Point, Coorong, South Australia. The dates range from 2938â2529 to 326â1 cal. BP, extending the known period of occupation of Long Point. Previous dating at the sites indicated intensive occupation of the area from 2455â2134 cal. BP. Results provide a detailed local chronology for the region, contributing to a more comprehensive understanding of Aboriginal use of Ngarrindjeri lands and waters. This study validates the use of fish otoliths for radiocarbon dating and reveals how dating different materials can result in different midden chronologies
Ising model on 3D random lattices: A Monte Carlo study
We report single-cluster Monte Carlo simulations of the Ising model on
three-dimensional Poissonian random lattices with up to 128,000 approx. 503
sites which are linked together according to the Voronoi/Delaunay prescription.
For each lattice size quenched averages are performed over 96 realizations. By
using reweighting techniques and finite-size scaling analyses we investigate
the critical properties of the model in the close vicinity of the phase
transition point. Our random lattice data provide strong evidence that, for the
available system sizes, the resulting effective critical exponents are
indistinguishable from recent high-precision estimates obtained in Monte Carlo
studies of the Ising model and \phi^4 field theory on three-dimensional regular
cubic lattices.Comment: 35 pages, LaTex, 8 tables, 8 postscript figure
From Household Size to the Life Course
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66696/2/10.1177_000276427702100207.pd
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
- âŠ