515 research outputs found

    Fermi gamma-ray `bubbles' from stochastic acceleration of electrons

    Full text link
    Gamma-ray data from Fermi-LAT reveal a bi-lobular structure extending up to 50 degrees above and below the galactic centre, which presumably originated in some form of energy release there less than a few million years ago. It has been argued that the gamma-rays arise from hadronic interactions of high energy cosmic rays which are advected out by a strong wind, or from inverse-Compton scattering of relativistic electrons accelerated at plasma shocks present in the bubbles. We explore the alternative possibility that the relativistic electrons are undergoing stochastic 2nd-order Fermi acceleration by plasma wave turbulence through the entire volume of the bubbles. The observed gamma-ray spectral shape is then explained naturally by the resulting hard electron spectrum and inverse Compton losses. Rather than a constant volume emissivity as in other models, we predict a nearly constant surface brightness, and reproduce the observed sharp edges of the bubbles.Comment: 4 pages, 4 figures; REVTeX4-1; discussion amended and one figure added; to appear in PR

    Intercomparison of carbonate chemistry measurements on a cruise in northwestern European shelf seas

    Get PDF
    Four carbonate system variables were measured in surface waters during a cruise aimed at investigating ocean acidification impacts traversing northwestern European shelf seas in the summer of 2011. High-resolution surface water data were collected for partial pressure of carbon dioxide (pCO2; using two independent instruments) and pH using the total pH scale (pHT), in addition to discrete measurements of total alkalinity and dissolved inorganic carbon. We thus overdetermined the carbonate system (four measured variables, two degrees of freedom), which allowed us to evaluate the level of agreement between the variables on a cruise whose main aim was not intercomparison, and thus where conditions were more representative of normal working conditions. Calculations of carbonate system variables from other measurements generally compared well with direct observations of the same variables (Pearson’s correlation coefficient always greater than or equal to 0.94; mean residuals were similar to the respective accuracies of the measurements). We therefore conclude that four of the independent data sets of carbonate chemistry variables were of high quality. A diurnal cycle with a maximum amplitude of 41 μatm was observed in the difference between the pCO2 values obtained by the two independent analytical pCO2 systems, and this was partly attributed to irregular seawater flows to the equilibrator and partly to biological activity inside the seawater supply and one of the equilibrators. We discuss how these issues can be addressed to improve carbonate chemistry data quality on future research cruises

    On the mechanism for breaks in the cosmic ray spectrum

    Full text link
    The proof of cosmic ray (CR) origin in supernova remnants (SNR) must hinge on full consistency of the CR acceleration theory with the observations; direct proof is impossible because of the orbit stochasticity of CR particles. Recent observations of a number of galactic SNR strongly support the SNR-CR connection in general and the Fermi mechanism of CR acceleration, in particular. However, many SNR expand into weakly ionized dense gases, and so a significant revision of the mechanism is required to fit the data. We argue that strong ion-neutral collisions in the remnant surrounding lead to the steepening of the energy spectrum of accelerated particles by \emph{exactly one power}. The spectral break is caused by a partial evanescence of Alfven waves that confine particles to the accelerator. The gamma-ray spectrum generated in collisions of the accelerated protons with the ambient gas is also calculated. Using the recent Fermi spacecraft observation of the SNR W44 as an example, we demonstrate that the parent proton spectrum is a classical test particle power law E2\propto E^{-2}, steepening to E3E^{-3} at Ebr7GeVE_{br}\approx7GeV.Comment: APS talk to appear in PoP, 4 figure

    Saturn's Atmospheric Composition from Observations by the Cassini/Composite Infrared Spectrometer

    Get PDF
    Thermal emission infrared observation of Saturn s atmosphere are being made by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft since its insertion in Saturn s orbit on July 2nd, 2004. The measurements made in both limb and nadir modes of observations consist of infrared spectra in the 10-1400/cm region with a variable spectral resolution of 0.53/cm and 2.8/cm, and exhibit rotational and vibrational spectral features that may be analyzed for retrieval of the thermal structure and constituent distribution of Saturn s atmosphere. In this paper, we present a comprehensive analysis of the CIRS infrared observed spectra for retrieval of Saturn s atmospheric composition focusing on the distributions of some selected hydrocarbons, phosphine, ammonia, and possible determination of the isotopic ratios of some species with sufficiently strong isolated spectral features. A comparison of the retrieved constituent distributions with the available data in the literature will be made

    Skeletal Morphology of Opius dissitus and Biosteres carbonarius (Hymenoptera: Braconidae), with a Discussion of Terminology

    Get PDF
    The Braconidae, a family of parasitic wasps, constitute a major taxonomic challenge with an estimated diversity of 40,000 to 120,000 species worldwide, only 18,000 of which have been described to date. The skeletal morphology of braconids is still not adequately understood and the terminology is partly idiosyncratic, despite the fact that anatomical features form the basis for most taxonomic work on the group. To help address this problem, we describe the external skeletal morphology of Opius dissitus Muesebeck 1963 and Biosteres carbonarius Nees 1834, two diverse representatives of one of the least known and most diverse braconid subfamilies, the Opiinae. We review the terminology used to describe skeletal features in the Ichneumonoidea in general and the Opiinae in particular, and identify a list of recommend terms, which are linked to the online Hymenoptera Anatomy Ontology. The morphology of the studied species is illustrated with SEM-micrographs, photos and line drawings. Based on the examined species, we discuss intraspecific and interspecific morphological variation in the Opiinae and point out character complexes that merit further study

    Iron biogeochemistry across marine systems progress from the past decade

    Get PDF
    Based on an international workshop (Gothenburg, 14–16 May 2008), this review article aims to combine interdisciplinary knowledge from coastal and open ocean research on iron biogeochemistry. The major scientific findings of the past decade are structured into sections on natural and artificial iron fertilization, iron inputs into coastal and estuarine systems, colloidal iron and organic matter, and biological processes. Potential effects of global climate change, particularly ocean acidification, on iron biogeochemistry are discussed. The findings are synthesized into recommendations for future research areas

    Seasonal Changes in Titan's Southern Stratosphere

    Get PDF
    In August 2009 Titan passed through northern spring equinox, and the southern hemisphere passed into fall. Since then, the moon's atmosphere has been closely watched for evidence of the expected seasonal reversal of stratospheric circulation, with increased northern insolation leading to upwelling, and consequent downwelling at southern high latitudes. If the southern winter mirrors the northern winter, this circulation will be traced by increases in short-lived gas species advected downwards from the upper atmosphere to the stratosphere. The Cassini spacecraft in orbit around Saturn carries on board the Composite Infrared Spectrometer (CIRS), which has been actively monitoring the trace gas populations through measurement of the intensity of their infrared emission bands (7-1000 micron). In this presentation we will show fresh evidence from recent CIRS measurements in June 2012, that the shortest-lived and least abundant minor species (C3H4, C4H2, C6H6, HC3N) are indeed increasing dramatically southwards of 50S in the lower stratosphere. Intriguingly, the more stable gases (C2H2, HCN, CO2) have yet to show this trend, and continue to exhibit their 'summer' abundances, decreasing towards the south pole. Possible chemical and dynamical explanations of these results will be discussed , along with the potential of future CIRS measurements to monitor and elucidate these seasonal changes

    Exact Expressions for the Critical Mach Numbers in the Two-Fluid Model of Cosmic-Ray Modified Shocks

    Get PDF
    The acceleration of relativistic particles due to repeated scattering across a shock wave remains the most attractive model for the production of energetic cosmic rays. This process has been analyzed extensively during the past two decades using the ``two-fluid'' model of diffusive shock acceleration. It is well known that 1, 2, or 3 distinct solutions for the flow structure can be found depending on the upstream parameters. The precise nature of the critical conditions delineating the number and character of shock transitions has remained unclear, mainly due to the inappropriate choice of parameters used in the determination of the upstream boundary conditions. We derive the exact critical conditions by reformulating the upstream boundary conditions in terms of two individual Mach numbers defined with respect to the cosmic-ray and gas sound speeds, respectively. The gas and cosmic-ray adiabatic indices are assumed to remain constant throughout the flow, although they may have arbitrary, independent values. Our results provide for the first time a complete, analytical classification of the parameter space of shock transitions in the two-fluid model. When multiple solutions are possible, we propose using the associated entropy distributions as a means for indentifying the most stable configuration.Comment: Accepted for publication in ApJ; corrected a few typos; added journal re

    The theory of pulsar winds and nebulae

    Full text link
    We review current theoretical ideas on pulsar winds and their surrounding nebulae. Relativistic MHD models of the wind of the aligned rotator, and of the striped wind, together with models of magnetic dissipation are discussed. It is shown that the observational signature of this dissipation is likely to be point-like, rather than extended, and that pulsed emission may be produced. The possible pulse shapes and polarisation properties are described. Particle acceleration at the termination shock of the wind is discussed, and it is argued that two distinct mechanisms must be operating, with the first-order Fermi mechanism producing the high-energy electrons (above 1 TeV) and either magnetic annihilation or resonant absorption of ion cyclotron waves responsible for the 100 MeV to 1 TeV electrons. Finally, MHD models of the morphology of the nebula are discussed and compared with observation.Comment: 33 pages, to appear in Springer Lecture Notes on "Neutron stars and pulsars, 40 years after the discovery", ed W.Becke
    corecore