72 research outputs found

    Metabolomics and Lipidomics Profiling of a Combined Mitochondrial Plus Endoplasmic Reticulum Fraction of Human Fibroblasts: A Robust Tool for Clinical Studies

    Get PDF
    Mitochondria and endoplasmic reticulum (ER) are physically and functionally connected. This close interaction, via mitochondria-associated membranes, is increasingly explored and supports the importance of studying these two organelles as a whole. Metabolomics and lipidomics are powerful approaches for the exploration of metabolic pathways that may be useful to provide deeper information on these organelles\u27 functions, dysfunctions, and interactions. We developed a quick and simple experimental procedure for the purification of a mitochondria-ER fraction from human fibroblasts. We applied combined metabolomics and lipidomics analyses by mass spectrometry with excellent reproducibility. Seventy-two metabolites and 418 complex lipids were detected with a mean coefficient of variation around 12%, among which many were specific to the mitochondrial metabolism. Thus this strategy based on robust mitochondria-ER extraction and "omics" combination will be useful for investigating the pathophysiology of complex diseases

    Peripheral, but not central, CB1 antagonism provides food intake-independent metabolic benefits in diet-induced obese rats.

    Get PDF
    OBJECTIVE Blockade of the CB1 receptor is one of the promising strategies for the treatment of obesity. Although antagonists suppress food intake and reduce body weight, the role of central versus peripheral CB1 activation on weight loss and related metabolic parameters remains to be elucidated. We therefore specifically assessed and compared the respective potential relevance of central nervous system (CNS) versus peripheral CB1 receptors in the regulation of energy homeostasis and lipid and glucose metabolism in diet-induced obese (DIO) rats. RESEARCH DESIGN AND METHODS Both lean and DIO rats were used for our experiments. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR, and euglycemic-hyperinsulinemic clamps were used for insulin sensitivity and glucose metabolism studies. RESULTS Specific CNS-CB1 blockade decreased body weight and food intake but, independent of those effects, had no beneficial influence on peripheral lipid and glucose metabolism. Peripheral treatment with CB1 antagonist (Rimonabant) also reduced food intake and body weight but, in addition, independently triggered lipid mobilization pathways in white adipose tissue and cellular glucose uptake. Insulin sensitivity and skeletal muscle glucose uptake were enhanced, while hepatic glucose production was decreased during peripheral infusion of the CB1 antagonist. However, these effects depended on the antagonist-elicited reduction of food intake. CONCLUSIONS Several relevant metabolic processes appear to independently benefit from peripheral blockade of CB1, while CNS-CB1 blockade alone predominantly affects food intake and body weight

    Metabo-lipidomics of Fibroblasts and Mitochondrial-Endoplasmic Reticulum Extracts from ALS Patients Shows Alterations in Purine, Pyrimidine, Energetic, and Phospholipid Metabolisms

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is characterized by a wide metabolic remodeling, as shown by recent metabolomics and lipidomics studies performed in samples from patient cohorts and experimental animal models. Here, we explored the metabolome and lipidome of fibroblasts from sporadic ALS patients (n = 13) comparatively to age- and sex-matched controls (n = 11), and the subcellular fraction containing the mitochondria and endoplasmic reticulum (mito-ER), given that mitochondrial dysfunctions and ER stress are important features of ALS patho-mechanisms. We also assessed the mitochondrial oxidative respiration and the mitochondrial genomic (mtDNA) sequence, although without yielding significant differences. Compared to controls, ALS fibroblasts did not exhibit a mitochondrial respiration defect nor an increased proportion of mitochondrial DNA mutations. In addition, non-targeted metabolomics and lipidomics analyses identified 124 and 127 metabolites, and 328 and 220 lipids in whole cells and the mito-ER fractions, respectively, along with partial least-squares-discriminant analysis (PLS-DA) models being systematically highly predictive of the disease. The most discriminant metabolomic features were the alteration of purine, pyrimidine, and energetic metabolisms, suggestive of oxidative stress and of pro-inflammatory status. The most important lipidomic feature in the mito-ER fraction was the disturbance of phosphatidylcholine PC (36:4p) levels, which we had previously reported in the cerebrospinal fluid of ALS patients and in the brain from an ALS mouse model. Thus, our results reveal that fibroblasts from sporadic ALS patients share common metabolic remodeling, consistent with other metabolic studies performed in ALS, opening perspectives for further exploration in this cellular model in ALS

    Lipidomics Reveals Triacylglycerol Accumulation Due to Impaired Fatty Acid Flux in Opa1-Disrupted Fibroblasts

    Get PDF
    OPA1 is a dynamin GTPase implicated in mitochondrial membrane fusion. Despite its involvement in lipid remodeling, the function of OPA1 has never been analyzed by whole-cell lipidomics. We used a nontargeted, reversed-phase lipidomics approach, validated for cell cultures, to investigate OPA1-inactivated mouse embryonic fibroblasts ( Opa1 MEFs). This led to the identification of a wide range of 14 different lipid subclasses comprising 212 accurately detected lipids. Multivariate and univariate statistical analyses were then carried out to assess the differences between the Opa1 and Opa1 genotypes. Of the 212 lipids identified, 69 were found to discriminate between Opa1 MEFs and Opa1 MEFs. Among these lipids, 34 were triglycerides, all of which were at higher levels in Opa1 MEFs with fold changes ranging from 3.60 to 17.93. Cell imaging with labeled fatty acids revealed a sharp alteration of the fatty acid flux with a reduced mitochondrial uptake. The other 35 discriminating lipids included phosphatidylcholines, lysophosphatidylcholines, phosphatidylethanolamine, and sphingomyelins, mainly involved in membrane remodeling, and ceramides, gangliosides, and phosphatidylinositols, mainly involved in apoptotic cell signaling. Our results show that the inactivation of OPA1 severely affects the mitochondrial uptake of fatty acids and lipids through membrane remodeling and apoptotic cell signaling

    Primary fibroblasts derived from sporadic amyotrophic lateral sclerosis patients do not show ALS cytological lesions

    Get PDF
    OBJECTIVE: Sporadic amyotrophic lateral sclerosis (sALS) is a fatal neurodegenerative disorder affecting upper and lower motor neurons. In view of the heterogeneous presentation of the disease, one of the current challenges is to identify diagnostic and prognostic markers in order to diagnose sALS at early stage and to stratify patients in trials. In this study, we sought to identify cytological hallmarks of sALS in patient-derived fibroblasts with the aim of finding new clinical-related markers of the disease. METHODS: Primary fibroblasts were prospectively collected from patients affected with classical, rapid, and slow forms of sALS. TDP-43 localization, cytoskeleton distribution, mitochondrial network architecture, and stress granules formation were analyzed using 3D fluorescence microscopy and new super-resolution imaging. Intracellular reactive oxygen species (ROS) production was assessed using live imaging techniques. RESULTS: Six sALS patients (two classical, two rapid, and two slow) and four age-matched controls were included. No difference in fibroblasts cell growth, morphology, and distribution was noticed. The analysis of TDP-43 did not reveal any mislocalization nor aggregation of the protein. The cytoskeleton was harmoniously distributed among the cells, without any inclusion noticed, and no difference was observed regarding the mitochondrial network architecture. Basal ROS production and response to induced stress were similar among patient and control fibroblasts. CONCLUSIONS: ALS cytological lesions are absent in patient-derived fibroblasts and thus cannot contribute as diagnostic nor prognostic markers of the disease

    Author Correction: A ferroptosis–based panel of prognostic biomarkers for Amyotrophic Lateral Sclerosis

    Get PDF
    Correction to: Scientific Reports https://doi.org/10.1038/s41598-019-39739-5, published online 27 February 201

    Could conservative iron chelation lead to neuroprotection in amyotrophic lateral sclerosis?

    Get PDF
    Iron accumulation has been observed in mouse models and both sporadic and familial forms of Amyotrophic lateral sclerosis. Iron chelation could reduce iron accumulation and the related excess of oxidative stress in the motor pathways. However, classical iron chelation would induce systemic iron depletion. We assess the safety and efficacy of conservative iron chelation (i.e. chelation with low risk of iron depletion) in a murine preclinical model and pilot clinical trial. In Sod1G86R mice, deferiprone increased the mean life span as compared with placebo. The safety was good, without anemia after 12 months of deferiprone in the 23 ALS patients enrolled in the clinical trial. The decreases in the ALS Functional Rating Scale and the body mass index (BMI) were significantly smaller for the first 3 months of deferiprone treatment (30 mg/kg/day) than for the first treatment-free period. Iron levels in the cervical spinal cord, medulla oblongata and motor cortex (according to MRI), as well as cerebrospinal fluid levels of oxidative stress and neurofilament light chains were lower after deferiprone treatment. Our observation leads to the hypothesis that moderate iron chelation regimen that avoids changes in systemic iron levels may constitute a novel therapeutic modality of neuroprotection for ALS

    A Plasma Metabolomic Signature Involving Purine Metabolism in Human Optic Atrophy 1 (OPA1)-Related Disorders

    Get PDF
    Purpose: Dominant optic atrophy (DOA; MIM [Mendelian Inheritance in Man] 165500), resulting in retinal ganglion cell degeneration, is mainly caused by mutations in the optic atrophy 1 (OPA1) gene, which encodes a dynamin guanosine triphosphate (GTP)ase involved in mitochondrial membrane processing. This work aimed at determining whether plasma from OPA1 pathogenic variant carriers displays a specific metabolic signature. Methods: We applied a nontargeted clinical metabolomics pipeline based on ultra-high-pressure liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) allowing the exploration of 500 polar metabolites in plasma. We compared the plasma metabolic profiles of 25 patients with various OPA1 pathogenic variants and phenotypes to those of 20 healthy controls. Statistical analyses were performed using univariate and multivariate (principal component analysis [PCA], orthogonal partial least-squares discriminant analysis [OPLS-DA]) methods and a machine learning approach, the Biosigner algorithm. Results: A robust and relevant predictive model characterizing OPA1 individuals was obtained, based on a complex panel of metabolites with altered concentrations. An impairment of the purine metabolism, including significant differences in xanthine, hypoxanthine, and inosine concentrations, was at the foreground of this signature. In addition, the signature was characterized by differences in urocanate, choline, phosphocholine, glycerate, 1-oleoyl-rac-glycerol, rac-glycerol-1-myristate, aspartate, glutamate, and cystine concentrations. Conclusions: This first metabolic signature reported in the plasma of patient carrying OPA1 pathogenic variants highlights the unexpected involvement of purine metabolism in the pathophysiology of DOA

    The Metabolomic Bioenergetic Signature of Opa1-Disrupted Mouse Embryonic Fibroblasts Highlights Aspartate Deficiency

    Get PDF
    OPA1 (Optic Atrophy 1) is a multi-isoform dynamin GTPase involved in the regulation of mitochondrial fusion and organization of the cristae structure of the mitochondrial inner membrane. Pathogenic OPA1 variants lead to a large spectrum of disorders associated with visual impairment due to optic nerve neuropathy. The aim of this study was to investigate the metabolomic consequences of complete OPA1 disruption in Opa1 mouse embryonic fibroblasts (MEFs) compared to their Opa1 counterparts. Our non-targeted metabolomics approach revealed significant modifications of the concentration of several mitochondrial substrates, i.e. a decrease of aspartate, glutamate and α-ketoglutaric acid, and an increase of asparagine, glutamine and adenosine-5\u27-monophosphate, all related to aspartate metabolism. The signature further highlighted the altered metabolism of nucleotides and NAD together with deficient mitochondrial bioenergetics, reflected by the decrease of creatine/creatine phosphate and pantothenic acid, and the increase in pyruvate and glutathione. Interestingly, we recently reported significant variations of five of these molecules, including aspartate and glutamate, in the plasma of individuals carrying pathogenic OPA1 variants. Our findings show that the disruption of OPA1 leads to a remodelling of bioenergetic pathways with the central role being played by aspartate and related metabolites
    • 

    corecore